65 resultados para Efficient estimation
Resumo:
This work examines the effect of weld strength mismatch on fracture toughness measurements defined by J and CTOD fracture parameters using single edge notch bend (SE(B)) specimens. A central objective of the present study is to enlarge on previous developments of J and CTOD estimation procedures for welded bend specimens based upon plastic eta factors (eta) and plastic rotational factors (r (p) ). Very detailed non-linear finite element analyses for plane-strain models of standard SE(B) fracture specimens with a notch located at the center of square groove welds and in the heat affected zone provide the evolution of load with increased crack mouth opening displacement required for the estimation procedure. One key result emerging from the analyses is that levels of weld strength mismatch within the range +/- 20% mismatch do not affect significantly J and CTOD estimation expressions applicable to homogeneous materials, particularly for deeply cracked fracture specimens with relatively large weld grooves. The present study provides additional understanding on the effect of weld strength mismatch on J and CTOD toughness measurements while, at the same time, adding a fairly extensive body of results to determine parameters J and CTOD for different materials using bend specimens with varying geometries and mismatch levels.
Resumo:
In this paper, 2 different approaches for estimating the directional wave spectrum based on a vessel`s 1st-order motions are discussed, and their predictions are compared to those provided by a wave buoy. The real-scale data were obtained in an extensive monitoring campaign based on an FPSO unit operating at Campos Basin, Brazil. Data included vessel motions, heading and tank loadings. Wave field information was obtained by means of a heave-pitch-roll buoy installed in the vicinity of the unit. `two of the methods most widely used for this kind of analysis are considered, one based on Bayesian statistical inference, the other consisting of a parametrical representation of the wave spectrum. The performance of both methods is compared, and their sensitivity to input parameters is discussed. This analysis complements a set of previous validations based on numerical and towing-tank results and allows for a preliminary evaluation of reliability when applying the methodology at full scale.
Resumo:
Modern Integrated Circuit (IC) design is characterized by a strong trend of Intellectual Property (IP) core integration into complex system-on-chip (SOC) architectures. These cores require thorough verification of their functionality to avoid erroneous behavior in the final device. Formal verification methods are capable of detecting any design bug. However, due to state explosion, their use remains limited to small circuits. Alternatively, simulation-based verification can explore hardware descriptions of any size, although the corresponding stimulus generation, as well as functional coverage definition, must be carefully planned to guarantee its efficacy. In general, static input space optimization methodologies have shown better efficiency and results than, for instance, Coverage Directed Verification (CDV) techniques, although they act on different facets of the monitored system and are not exclusive. This work presents a constrained-random simulation-based functional verification methodology where, on the basis of the Parameter Domains (PD) formalism, irrelevant and invalid test case scenarios are removed from the input space. To this purpose, a tool to automatically generate PD-based stimuli sources was developed. Additionally, we have developed a second tool to generate functional coverage models that fit exactly to the PD-based input space. Both the input stimuli and coverage model enhancements, resulted in a notable testbench efficiency increase, if compared to testbenches with traditional stimulation and coverage scenarios: 22% simulation time reduction when generating stimuli with our PD-based stimuli sources (still with a conventional coverage model), and 56% simulation time reduction when combining our stimuli sources with their corresponding, automatically generated, coverage models.
Distributed Estimation Over an Adaptive Incremental Network Based on the Affine Projection Algorithm
Resumo:
We study the problem of distributed estimation based on the affine projection algorithm (APA), which is developed from Newton`s method for minimizing a cost function. The proposed solution is formulated to ameliorate the limited convergence properties of least-mean-square (LMS) type distributed adaptive filters with colored inputs. The analysis of transient and steady-state performances at each individual node within the network is developed by using a weighted spatial-temporal energy conservation relation and confirmed by computer simulations. The simulation results also verify that the proposed algorithm provides not only a faster convergence rate but also an improved steady-state performance as compared to an LMS-based scheme. In addition, the new approach attains an acceptable misadjustment performance with lower computational and memory cost, provided the number of regressor vectors and filter length parameters are appropriately chosen, as compared to a distributed recursive-least-squares (RLS) based method.
Resumo:
The simultaneous use of different sensors technologies is an efficient method to increase the performance of chemical sensors systems. Among the available technologies, mass and capacitance transducers are particularly interesting because they can take advantage also from non-conductive sensing layers, such as most of the more interesting molecular recognition systems. In this paper, an array of quartz microbalance sensors is complemented by an array of capacitors obtained from a commercial biometrics fingerprints detector. The two sets of transducers, properly functionalized by sensitive molecular and polymeric films, are utilized for the estimation of adulteration in gasolines, and in particular to quantify the content of ethanol in gasolines, an application of importance for Brazilian market. Results indicate that the hybrid system outperforms the individual sensor arrays even if the quantification of ethanol in gasoline, due to the variability of gasolines formulation, is affected by a barely acceptable error. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We derive the Cramer-Rao Lower Bound (CRLB) for the estimation of initial conditions of noise-embedded orbits produced by general one-dimensional maps. We relate this bound`s asymptotic behavior to the attractor`s Lyapunov number and show numerical examples. These results pave the way for more suitable choices for the chaotic signal generator in some chaotic digital communication systems. (c) 2006 Published by Elsevier Ltd.
Resumo:
This work aims at proposing the use of the evolutionary computation methodology in order to jointly solve the multiuser channel estimation (MuChE) and detection problems at its maximum-likelihood, both related to the direct sequence code division multiple access (DS/CDMA). The effectiveness of the proposed heuristic approach is proven by comparing performance and complexity merit figures with that obtained by traditional methods found in literature. Simulation results considering genetic algorithm (GA) applied to multipath, DS/CDMA and MuChE and multi-user detection (MuD) show that the proposed genetic algorithm multi-user channel estimation (GAMuChE) yields a normalized mean square error estimation (nMSE) inferior to 11%, under slowly varying multipath fading channels, large range of Doppler frequencies and medium system load, it exhibits lower complexity when compared to both maximum likelihood multi-user channel estimation (MLMuChE) and gradient descent method (GrdDsc). A near-optimum multi-user detector (MuD) based on the genetic algorithm (GAMuD), also proposed in this work, provides a significant reduction in the computational complexity when compared to the optimum multi-user detector (OMuD). In addition, the complexity of the GAMuChE and GAMuD algorithms were (jointly) analyzed in terms of number of operations necessary to reach the convergence, and compared to other jointly MuChE and MuD strategies. The joint GAMuChE-GAMuD scheme can be regarded as a promising alternative for implementing third-generation (3G) and fourth-generation (4G) wireless systems in the near future. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Hub-and-spoke networks are widely studied in the area of location theory. They arise in several contexts, including passenger airlines, postal and parcel delivery, and computer and telecommunication networks. Hub location problems usually involve three simultaneous decisions to be made: the optimal number of hub nodes, their locations and the allocation of the non-hub nodes to the hubs. In the uncapacitated single allocation hub location problem (USAHLP) hub nodes have no capacity constraints and non-hub nodes must be assigned to only one hub. In this paper, we propose three variants of a simple and efficient multi-start tabu search heuristic as well as a two-stage integrated tabu search heuristic to solve this problem. With multi-start heuristics, several different initial solutions are constructed and then improved by tabu search, while in the two-stage integrated heuristic tabu search is applied to improve both the locational and allocational part of the problem. Computational experiments using typical benchmark problems (Civil Aeronautics Board (CAB) and Australian Post (AP) data sets) as well as new and modified instances show that our approaches consistently return the optimal or best-known results in very short CPU times, thus allowing the possibility of efficiently solving larger instances of the USAHLP than those found in the literature. We also report the integer optimal solutions for all 80 CAB data set instances and the 12 AP instances up to 100 nodes, as well as for the corresponding new generated AP instances with reduced fixed costs. Published by Elsevier Ltd.
Resumo:
An efficient method was developed for the synthesis of pyrrole and furan derivatives from enamines, phenols, and naphthols. The key steps involve iodocyclization and alumina-induced dehydroiodination reactions.
Resumo:
Asymmetric discrete triangular distributions are introduced in order to extend the symmetric ones serving for discrete associated kernels in the nonparametric estimation for discrete functions. The extension from one to two orders around the mode provides a large family of discrete distributions having a finite support. Establishing a bridge between Dirac and discrete uniform distributions, some different shapes are also obtained and their properties are investigated. In particular, the mean and variance are pointed out. Applications to discrete kernel estimators are given with a solution to a boundary bias problem. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The zero-inflated negative binomial model is used to account for overdispersion detected in data that are initially analyzed under the zero-Inflated Poisson model A frequentist analysis a jackknife estimator and a non-parametric bootstrap for parameter estimation of zero-inflated negative binomial regression models are considered In addition an EM-type algorithm is developed for performing maximum likelihood estimation Then the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and some ways to perform global influence analysis are derived In order to study departures from the error assumption as well as the presence of outliers residual analysis based on the standardized Pearson residuals is discussed The relevance of the approach is illustrated with a real data set where It is shown that zero-inflated negative binomial regression models seems to fit the data better than the Poisson counterpart (C) 2010 Elsevier B V All rights reserved
Resumo:
In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Crop rotation in center-pivot for phytonematode control: density variation, pathogenicity and crop loss estimation A field study conducted over three consecutive years, on a farm using crop rotation system under center-pivot and infested with the nematodes Pratylenchus brachyurus, P. zeae, Meloidogyne incognita, Paratrichodorus minor, Helicotylenchus dihystera, Mesocriconema ornata and M. onoense, demonstrated that intensive crop systems provide conditions for the maintenance of high densities of polyphagous phytonematodes. Of the crops established on the farm (cotton, maize, soybean and cowpea), cotton and soybean suffered the most severe crop losses, caused respectively by M. incognita and P. brachyurus. Since maize is a good host for both nematodes, but tolerant of M. incognita, its exclusion from cropping system would be favorable to the performance of cotton, soybean and cowpea. Results from experiments carried out in controlled conditions confirmed the pathogenicity of P. brachyurus on cotton. Additional management with genetic resistance was useful in fields infested with M. incognita, although the soybean performance was affected by low resistance of the cultivars used for P. brachyurus. In conclusion, crop rotation must be carefully planned in areas infested with polyphagous nematodes, specifically in the case of occurrence of two or more major pathogenic nematodes.
Resumo:
The development of genetic maps for auto-incompatible species, such as the yellow passion fruit (Passiflora edulis Sims f.flavicarpa Deg.) is restricted due to the unfeasibility of obtaining traditional mapping populations based on inbred lines. For this reason, yellow passion fruit linkage maps were generally constructed using a strategy known as two-way pseudo-testeross, based on monoparental dominant markers segregating in a 1:1 fashion. Due to the lack of information from these markers in one of the parents, two individual (parental) maps were obtained. However, integration of these maps is essential, and biparental markers can be used for such an operation. The objective of our study was to construct an integrated molecular map for a full-sib population of yellow passion fruit combining different loci configuration generated from amplified fragment length polymorphisms (AFLPs) and microsatellite markers and using a novel approach based on simultaneous maximum-likelihood estimation of linkage and linkage phases, specially designed for outcrossing species. Of the total number of loci, approximate to 76%, 21%, 0.7%, and 2.3% did segregate in 1:1, 3:1, 1:2:1, and 1:1:1:1 ratios, respectively. Ten linkage groups (LGs) were established with a logarithm of the odds (LOD) score >= 5.0 assuming a recombination fraction : <= 0.35. On average, 24 markers were assigned per LG, representing a total map length of 1687 cM, with a marker density of 6.9 cM. No markers were placed as accessories on the map as was done with previously constructed individual maps.
Resumo:
In this work, supercritical technology was used to obtain extracts from Ocimum basilicum (sweet basil) with CO(2) and the cosolvent H(2)O at 1, 10, and 20% (w/w). The raw material was obtained from hydroponic cultivation. The extract`s global yield isotherms, chemical compositions, antioxidant activity, and cost of manufacturing were determined. The extraction assays were done for pressures of 10 to 30 MPa at 303 to 323 K. The identification of the compounds present in the extracts was made by GC-MS and ESI-MS. The antioxidant activity of extracts was determined using the coupled reaction of beta-carotene and linolenic acid. At 1% of cosolvent, the largest global yield was obtained at 10 MPa and 303 K (2%, dry basis-d.b.); at 10% of cosolvent the largest global yield was obtained at 10 and 15 MPa (11%, d.b.), and at 20% of cosolvent the largest global yield was detected at 30 MPa and 303 K (24%, d.b.). The main components identified in the extracts were eugenol, germacrene-D, epi-alpha-cadinol, malic acid, tartaric acid, ramnose, caffeic acid, quinic acid, kaempferol, caffeoylquinic acid, and kaempferol 3-O-glucoside. Sweet basil extracts exhibited high antioxidant activity compared to beta-carotene. Three types of SFE extracts from sweet basil were produced, for which the estimated cost of manufacturing (class 5 type) varied from US$ 47.96 to US$ 1,049.58 per kilogram of dry extract.