204 resultados para Dirac-Hestenes equation
Resumo:
We consider a certain type of second-order neutral delay differential systems and we establish two results concerning the oscillation of solutions after the system undergoes controlled abrupt perturbations (called impulses). As a matter of fact, some particular non-impulsive cases of the system are oscillatory already. Thus, we are interested in finding adequate impulse controls under which our system remains oscillatory. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This work deals with the development of a numerical technique for simulating three-dimensional viscoelastic free surface flows using the PTT (Phan-Thien-Tanner) nonlinear constitutive equation. In particular, we are interested in flows possessing moving free surfaces. The equations describing the numerical technique are solved by the finite difference method on a staggered grid. The fluid is modelled by a Marker-and-Cell type method and an accurate representation of the fluid surface is employed. The full free surface stress conditions are considered. The PTT equation is solved by a high order method, which requires the calculation of the extra-stress tensor on the mesh contours. To validate the numerical technique developed in this work flow predictions for fully developed pipe flow are compared with an analytic solution from the literature. Then, results of complex free surface flows using the FIT equation such as the transient extrudate swell problem and a jet flowing onto a rigid plate are presented. An investigation of the effects of the parameters epsilon and xi on the extrudate swell and jet buckling problems is reported. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this Letter we deal with a nonlinear Schrodinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Here we show that the chaotic perturbation is more effective in destroying the soliton behavior, when compared with random or nonperiodic perturbation. For a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein condensates and their collective excitations and transport. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We discuss consistency of the concept of external background in QFT. Different restrictions on magnitude of magnetic and electric fields are analyzed. The back reaction due to strong electric field is calculated and restrictions on the magnitude and duration of such a field are obtained. The problem of consistency of Dirac equation with a superstrong Coulomb field is discussed.
Resumo:
In this paper we study fermion perturbations in four-dimensional black holes of string theory, obtained either from a non-extreme configuration of three intersecting five-branes with a boost along the common string or from a non-extreme intersecting system of two two-branes and two five-branes. The Dirac equation for the massless neutrino field, after conformal re-scaling of the metric, is written as a wave equation suitable to study the time evolution of the perturbation. We perform a numerical integration of the evolution equation, and with the aid of Prony fitting of the time-domain profile, we calculate the complex frequencies that dominate the quasinormal ringing stage, and also determine these quantities by the semi-analytical sixth-order WKB method. We also find numerically the decay factor of fermion fields at very late times, and show that the falloff is identical to those showing for massless fields in other four-dimensional black hole spacetimes.
Resumo:
In this article, we present an analytical direct method, based on a Numerov three-point scheme, which is sixth order accurate and has a linear execution time on the grid dimension, to solve the discrete one-dimensional Poisson equation with Dirichlet boundary conditions. Our results should improve numerical codes used mainly in self-consistent calculations in solid state physics.
Resumo:
This paper deals with asymptotic results on a multivariate ultrastructural errors-in-variables regression model with equation errors Sufficient conditions for attaining consistent estimators for model parameters are presented Asymptotic distributions for the line regression estimators are derived Applications to the elliptical class of distributions with two error assumptions are presented The model generalizes previous results aimed at univariate scenarios (C) 2010 Elsevier Inc All rights reserved
Resumo:
The goal of this paper is to present an approximation scheme for a reaction-diffusion equation with finite delay, which has been used as a model to study the evolution of a population with density distribution u, in such a way that the resulting finite dimensional ordinary differential system contains the same asymptotic dynamics as the reaction-diffusion equation.
Resumo:
In this work we study, in the framework of Colombeau`s generalized functions, the Hamilton-Jacobi equation with a given initial condition. We have obtained theorems on existence of solutions and in some cases uniqueness. Our technique is adapted from the classical method of characteristics with a wide use of generalized functions. We were led also to obtain some general results on invertibility and also on ordinary differential equations of such generalized functions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In [H. Brezis, A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pure Appl. (9) (1983) 73-97.] Brezis and Friedman prove that certain nonlinear parabolic equations, with the delta-measure as initial data, have no solution. However in [J.F. Colombeau, M. Langlais, Generalized solutions of nonlinear parabolic equations with distributions as initial conditions, J. Math. Anal. Appl (1990) 186-196.] Colombeau and Langlais prove that these equations have a unique solution even if the delta-measure is substituted by any Colombeau generalized function of compact support. Here we generalize Colombeau and Langlais` result proving that we may take any generalized function as the initial data. Our approach relies on recent algebraic and topological developments of the theory of Colombeau generalized functions and results from [J. Aragona, Colombeau generalized functions on quasi-regular sets, Publ. Math. Debrecen (2006) 371-399.]. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We study the existence and stability of periodic travelling-wave solutions for generalized Benjamin-Bona-Mahony and Camassa-Holm equations. To prove orbital stability, we use the abstract results of Grillakis-Shatah-Strauss and the Floquet theory for periodic eigenvalue problems.
Resumo:
Amyloglucosidase enzyme was produced by Aspergillus niger NRRL 3122 from solid-state fermentation, using deffated rice bran as substrate. The effects of process parameters (pH, temperature) in the equilibrium partition coefficient for the system amyloglucosidase - resin DEAE-cellulose were investigated, aiming at obtaining the optimum conditions for a subsequent purification process. The highest partition coefficients were obtained using 0.025M Tris-HCl buffer, pH 8.0 and 25ºC. The conditions that supplied the highest partition coefficient were specified, the isotherm that better described the amyloglucosidase process of adsorption obtained. It was observed that the adsorption could be well described by Langmuir equation and the values of Qm and Kd estimated at 133.0 U mL-1 and 15.4 U mL-1, respectively. From the adjustment of the kinetic curves using the fourth-order Runge-Kutta algorithm, the adsorption (k1) and desorption (k2) constants were obtained through optimization by the least square procedure, and the values calculated were 2.4x10-3 mL U-1 min-1 for k1 and 0.037 min-1 for k2 .
Resumo:
A redução da disponibilidade de espécies de madeiras nativas e seus efeitos na economia, associada ao fortalecimento dos conceitos de preservação ambiental, criou a necessidade de desenvolvimento de alternativas viáveis para utilização racional de espécies de reflorestamento. E uma das opções é a realização de classificação visual das peças. Autores de trabalhos desenvolvidos nessa linha de pesquisa verificaram a adequação das regras de classificação visual do Southern Pine Inspection Bureau (SPIB) dos EUA à madeira de Pinus do Brasil e apresentaram proposta para normalizar o processo de classificação visual dessa madeira. Nessa classificação, os aspectos com maior influência são: presença de nós, desvio de grã em relação ao eixo da peça e densidade de anéis de crescimento. Assim, esta pesquisa apresenta um estudo experimental que consistiu na classificação visual e determinação da resistência à tração de 85 peças de Pinus spp e um estudo teórico, que propôs uma equação para determinar a resistência à tração média de peças estruturais em função da classificação visual. Com este trabalho, foi possível observar a influência dos nós e dos anéis de crescimento sobre a resistência à tração das peças analisadas.
Resumo:
O presente trabalho teve como objetivo a obtenção de isotermas de dessorção de filés de bonito (Sarda sarda), previamente salgados a vácuo e defumados com fumaça líquida. As isotermas foram obtidas a quatro temperaturas (5, 25, 40 e 60 ºC) em condições de dessorção, através do método gravimétrico estático, com soluções salinas saturadas. Os dados experimentais foram ajustados a quatro modelos da literatura (BET linearizado, GAB, Henderson e Oswin modificado). Os resultados mostraram que as isotermas tomaram forma sigmoidal de tipo II e que o modelo de Guggenheim-Anderson-deBoer (GAB) foi aceitável para modelar os dados experimentais. O calor isostérico de dessorção, um parâmetro necessário para simular e projetar adequadamente o secador, também foi calculado e pode ser representado através de um modelo matemático simples, em função da umidade de equilíbrio.
Resumo:
Objetivou-se avaliar os efeitos da ingestão diária de quatro níveis de fósforo (8, 12, 15 e 18 g) sobre o metabolismo de macrominerais (P, Ca, Mg, Na, K e S), incluindo a ingestão, a concentração no rúmen, a taxa de passagem do líquido ruminal, a excreção nas fezes e a disponibilidade aparente. Utilizaram-se quatro bubalinos adultos com fístulas ruminais em delineamento quadrado latino (4 × 4) com dieta total constituída de cana-de-açúcar como volumoso (85%) e concentrado formulado com um dos níveis de fósforo. Os níveis de fósforo não ocasionaram diferença significativa na concentração mineral no rúmen de nenhum mineral estudado. A concentração média de fósforo no conteúdo ruminal foi de 0,98% na matéria seca, enquanto o teor de fósforo nas rações variou de 0,12 a 0,34%, comprovando alta reciclagem de fósforo pela saliva. Níveis crescentes de fósforo na dieta, variando de 8 a 18 g/animal/dia, não influenciam as disponibilidades de cálcio e magnésio. Com o nível de fósforo de 15 g/dia, houve melhor utilização do fósforo da dieta. A ingestão de níveis crescentes de fósforo em g/kg0,75 (X) promoveu aumento linear na excreção fecal desse mineral em g/kg0,75 (Y) e baixos valores de disponibilidade do fósforo, que pode ser estimado pela equação Y = 0,03 + 0,610X, o que indica deficiência desse elemento mineral na dieta para o metabolismo animal.