138 resultados para Co-doped ZnO
Resumo:
O objetivo do trabalho foi reportar o planejamento cirúrgico, a técnica operatória, a instrumentação e os resultados da substituição completa do terço médio distal do fêmur, do platô tibial e da articulação do joelho por prótese em um cão acometido por osteossarcoma no fêmur esquerdo. A prótese foi confeccionada em aço, apresentando três componentes articulados, mantendo o movimento semelhante à articulação do joelho. As porções femorais e tibiais da prótese foram cimentadas aos respectivos ossos, após ostectomia do fêmur e do platô tibial. O animal foi submetido a seis sessões de quimioterapia, com doxorrubicina e carboplatina, intercaladas mensalmente, objetivando inibir o crescimento de possíveis metástases pulmonares. Durante os seis primeiros dias, o animal apresentou neuropraxia e impotência funcional do membro. Aos 10 dias, o cão iniciou leve apoio e aos 30 dias já utilizava o membro pélvico de forma mais efetiva, porém, o ângulo de extensão da articulação foi reduzido de 150° a 100° devido à contratura muscular e à fibrose na região da fossa poplítea. Após um ano de observação, não houve melhora do ângulo de extensão do joelho, porém, o animal fazia uso do membro com claudicação. Aos 425 dias de pós-operatório, o animal veio a óbito por insuficiência renal. Nesse tempo não ocorreram metástases pulmonares ou locais visíveis radiograficamente, mas o proprietário não permitiu a realização da necropsia do paciente, sendo impossível confirmar outros dados que pudessem esclarecer melhor a causa morte. Conclui-se que a substituição total do joelho de cão é uma cirurgia factível, que permite a preservação e a utilização do membro após ressecção da neoplasia, embora outras pesquisas devam ser conduzidas para obtenção de melhores resultados pós-cirúrgicos.
Resumo:
A Meningoencefalite Necrotizante (MEN) é uma encefalopatia causada por uma disfunção inflamatória de característica necrotizante. O objetivo deste relato é descrever os aspectos clínicos e anatomopatológicos da Meningoencefalite Necrotizante (MEN) em um cão Maltês. A doença tem um caráter necrótico único e está relacionada intimamente à Encefalite do Cão Pug (ECP) devido a suas semelhanças, bem como à Leucoencefalite Necrotizante (LEN). Embora o primeiro relato de caso de ECP tenha mais de 15 anos e o primeiro relato de caso de MEN em Maltês tenha 11 anos, há muito a ser revelado sobre a etiologia e os mecanismos imunopatológicos da doença. Neste trabalho, relata-se o caso de um cão Maltês com sinais que foram compatíveis com a MEN. Foram detectadas nas imagens macroscópicas, cavitação cerebral, e na microscopia, perda de células do parênquima em certas regiões do córtex cerebral. A partir dessas descobertas descreve-se o primeiro caso de MEN em cão Maltês no Brasil.
Resumo:
The aim of this work was to verify the stability of the beta Co(2)Si phase in the Co-Si system. The samples were produced via arc-melting and characterized through Scanning Electron Microscopy (SEM) and Differential Thermal Analysis (DTA). The results have confirmed the stability of the beta Co(2)Si phase, however, a modification of the shape of beta CoSi phase field is proposed in order to fully explain the results.
Resumo:
Luminescence properties of Eu(3+) doped germanate glasses containing either silver or gold nanoparticles (NPs) were investigated for excitation at 405 nm. Enhanced emissions and luminescence quenching of the Eu(3+) transitions in the range from 570 to 720 nm were observed for samples having various concentrations of metallic NPs. Electric-dipole and magnetic-dipole transitions that originate from the Eu(3+) level (5)D(0) exhibit large enhancement due to the presence of the metallic NPs. The results suggest that the magnetic response of rare-earth doped metal-dielectric composites at optical frequencies can be as strong as their electric response due to the confinement of the optical magnetic field. (C) 2010 American Institute of Physics. [doi:10.1063/1.3431347]
Resumo:
We report large photoluminescence (PL) enhancement in Eu(3+)-doped GeO(2)-Bi(2)O(3) glasses containing gold nanoparticles (NPs). Growth of approximate to 1000% in the PL intensity corresponding to the Eu(3+) transition (5)D(0)->(7)F(2), at 614 nm, was observed in comparison with a reference sample that does not contain gold NPs. Other PL bands from 580 to 700 nm are also enhanced. The enhancement of the PL intensity is attributed to the increased local field in the Eu(3+) locations due to the presence of the NPs and the energy transfer from the excited NPs to the Eu(3+) ions.
Resumo:
Background: Concomitant infections may influence HIV progression by causing chronic activation leading to decline in T-cell function. In the Americas, visceral (AVL) and tegumentary leishmaniasis (ATL) have emerged as important opportunistic infections in HIV-AIDS patients and both of those diseases have been implicated as potentially important co-factors in disease progression. We investigated whether leishmaniasis increases lymphocyte activation in HIV-1 co-infected patients. This might contribute to impaired cellular immune function. Methods: To address this issue we analyzed CD4(+) T absolute counts and the proportion of CD8(+) T cells expressing CD38 in Leishmania/HIV co-infected patients that recovered after anti-leishmanial therapy. Results: We found that, despite clinical remission of leishmaniasis, AVL co-infected patients presented a more severe immunossupression as suggested by CD4(+) T cell counts under 200 cells/mm(3), differing from ATL/HIV-AIDS cases that tends to show higher lymphocytes levels (over 350 cells/mm(3)). Furthermore, five out of nine, AVL/HIV-AIDS presented low CD4(+) T cell counts in spite of low or undetectable viral load. Expression of CD38 on CD8(+) T lymphocytes was significantly higher in AVL or ATL/HIV-AIDS cases compared to HIV/AIDS patients without leishmaniasis or healthy subjects. Conclusions: Leishmania infection can increase the degree of immune system activation in individuals concomitantly infected with HIV. In addition, AVL/HIV-AIDS patients can present low CD4(+) T cell counts and higher proportion of activated T lymphocytes even when HIV viral load is suppressed under HAART. This fact can cause a misinterpretation of these laboratorial markers in co-infected patients.
Resumo:
Objective: This study evaluated ultra-structural dentine changes at the apical stop after CO(2) laser irradiation used during biomechanical preparation. Background: Most studies evaluating the sealing efficiency of CO(2) lasers have been carried out after apical root canal resections and retro-filling procedures. Methods: Sixty human canines were prepared with #1 to #6 Largo burs. The apical stops were established at 1 mm (n = 30) and 2 mm (n = 30) from the apex. Final irrigation was performed with 1% NaOCl and 15% EDTA followed by 20 ml of distilled and deionized water. Specimens were subdivided into three subgroups (n = 10 for each stop distance): GI-no radiation (n = 20); GII-3W potency (n = 20), GIII-5W potency (n = 20). After preparation, specimens were evaluated by scanning electron microscopy, with ultra-structural changes classified according to a scoring system based on six qualitatively different outcomes. Results: Statistical analysis using the Mann-Whitney test confirmed more intense results for the specimens irradiated at 5 W potency than at 3 W (p<0.0001). The Kruskal-Wallis test indicated that when using the same potencies (3 or 5 W) at 1 and 2 mm from the apex, there were no statistically significant differences in ultra-structural changes. Conclusions: Our results showed that ultra-structural changes ranged from smear layer removal to dentine fusion. As laser potency was increased from 3 to 5 W, ultra-structural changes included extensive fused lava-like areas sealing the apical foramen.
Resumo:
Objective: To evaluate the potential of 980-nm gallium aluminum arsenide (GaAlAs) and 1064-nm neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers to reduce bacteria after irradiation of implant surfaces contaminated with Enterococcus faecalis and Porphyromonas gingivalis and on irradiated implant surface morphology. Background: Despite the frequency of implant success, some implant loss is related to peri-implantitis because of difficulty in eliminating the biofilm. Methods: Implants (3.75 x 13 mm) with machined surfaces, surfaces sand blasted with titanium oxide (TiO(2)), and sand-blasted and acid-etched surfaces were exposed to P. gingivalis and E. faecalis cultures and irradiated with 980-nm GaAlAs or 1064-nm Nd: YAG lasers. After laser treatments, the number of remaining colony-forming units and implant surface morphology were analyzed using scanning electron microscopy (SEM). Results: The Nd: YAG laser was able to promote a total contamination reduction on all implants irradiated. The results with the GaAlAs laser showed 100% bacteria reduction on the implants irradiated with 3 W. Irradiation with 2.5 W and 3 W achieved 100% of bacteria reduction on P. gingivalis-contaminated implants. Decontamination was not complete for the sand-blasted TiO(2) (78.6%) and acid-etched surfaces (49.4%) contaminated with E. faecalis and irradiated with 2.5 W. SEM showed no implant surface changes. Conclusion: The wavelengths used in this research provided bacteria reduction without damaging implant surfaces. New clinical research should be encouraged for the use of this technology in the treatment of peri-implantitis.
Resumo:
Natural mycoflora and co-occurrence of fumonisins (FB(1), FB(2)) and aflatoxins (AFB(1), AFB(2), AFG(1) and AFG(2)) in freshly harvested corn grain samples from four regions of Brazil were investigated. Fusarium verticillioides was predominant in all samples. Analysis of fumonisins showed that 98% of the samples were contaminated with FB(1) and 74.5% with FB(1) + FB(2), with toxin levels ranging from 0.015 to 9.67 mu g/g for FB(1) and from 0.015 to 3.16 mu g/g for FB(2). Twenty-one (10.5%) samples were contaminated with AFB(1), seven (3.5%) with AFB(2) and only one (0.5%) with AFG(1) and AFG(2). Co-contamination with aflatoxins and fumonisins was observed in 7% of the samples. The highest contamination of fumonisins and aflatoxins was observed in Nova Odessa (SP) and Varzea Grande (MT), respectively. The lowest contamination of these mycotoxins was found in Varzea Grande and Nova Odessa, respectively.
Resumo:
X-ray multiple diffraction experiments with synchrotron radiation were carried out on pure and doped nonlinear optical crystals: NH(4)H(2)PO(4) and KH(2)PO(4) doped with Ni and Mn, respectively. Variations in the intensity profiles were observed from pure to doped samples, and these variations correlated with shifts in the structure factor phases, also known as triplet phases. This result demonstrates the potential of X-ray phase measurements to study doping in this type of single crystal. Different methodologies for probing structural changes were developed. Dynamical diffraction simulations and curve fitting procedures were also necessary for accurate phase determination. Structural changes causing the observed phase shifts are discussed.
Resumo:
We report on an experimental study of the structures presented by urethane/urea elastomeric films without and with ferromagnetic nanoparticles incorporated. The study is made by using the X-ray diffraction, nuclear magnetic resonance (NMR), optical, atomic and magnetic force (MFM) microscopy techniques, and mechanical assays. The structure of the elastomeric matrix is characterized by a distance of 0.46 nm between neighboring molecular segments, almost independent on the stretching applied. The shear casting performed in order to obtain the elastomeric films tends to orient the molecules parallel to the flow direction thus introducing anisotropy in the molecular network which is reflected on the values obtained for the orientational order parameter and its increase for the stretched films. In the case of nanoparticles-doped samples, the structure remains nearly unchanged although the local order parameter is clearly larger for the undoped films. NMR experiments evidence modifications in the molecular network local ordering. Micrometer size clusters were observed by MFM for even small concentration of magnetic particles.
Resumo:
We investigate the electronic properties of Mn(B) substitutional doping in cubic boron nitride (BN), for different charge states, using density functional theory (DFT) calculations. We show that the neutral Mn has a nonmagnetic ground state (S=0). Upon charge injection, it is unambiguously shown that the Mn(B)(-) has a high-spin configuration with a strong, localized magnetic moment of 5 mu(Bohr). We developed a simple model, parameterized by the DFT results, that allows us to interpret the rules played by the crystal-field and exchange-correlation splitting in the magnetization process.
Resumo:
Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.
Resumo:
We have investigated the electronic and transport properties of zigzag Ni-adsorbed graphene nanoribbons (Ni/GNRs) using ab initio calculations. We find that the Ni adatoms lying along the edge of zigzag GNRs represent the energetically most stable configuration, with an energy difference of approximately 0.3 eV when compared to the adsorption in the middle of the ribbon. The carbon atoms at the ribbon edges still present nonzero magnetic moments as in the pristine GNR even though there is a quenching by a factor of almost five in the value of the local magnetic moments at the C atoms bonded to the Ni. This quenching decays relatively fast and at approximately 9 A from the Ni adsorption site the magnetic moments have already values close to the pristine ribbon. At the opposite edge and at the central carbon atoms the changes in the magnetic moments are negligible. The energetic preference for the antiparallel alignment between the magnetization at the opposite edges of the ribbon is still maintained upon Ni adsorption. We find many Ni d-related states within an energy window of 1 eV above and below the Fermi energy, which gives rise to a spin-dependent charge transport. These results suggest the possibility of manufacturing spin devices based on GNRs doped with Ni atoms.
Resumo:
We studied the effect of quantum confinement in Mn-doped InAs nanocrystals using theoretical methods. We observe that the stability of the impurities decreases with the size of the nanocrystals, making doping more difficult in small nanoparticles. Substitutional impurities are always more stable than interstitial ones, independent of the size of the nanocrystal. There is also a decrease in the energy difference between the high and low spin configurations, indicating that the critical temperature should decrease with the size of the nanoparticles, in agreement with experimental observations and in detriment to the development of functional spintronic devices with doped nanocrystals. Codoping with acceptors or saturating the nanocrystals with molecules that insert partially empty levels in the energy gap should be an efficient way to increase T(C).