66 resultados para CCD PHOTOMETRY
Resumo:
We present a new insight on NGC 6034 and UGC 842, two groups of galaxies previously reported in the literature as being fossil groups. The study is based on optical photometry and spectroscopy obtained with the CTIO Blanco telescope and Sloan Digital Sky Survey archival data. We find that NGC 6034 is embedded in a large structure, dominated by three rich clusters and other small groups. Its first and next four ranked galaxies have magnitude differences in the r band and projected distances which violate the optical criteria to classify it as a fossil group. We confirm that the UGC 842 group is a fossil group, but with about half the velocity dispersion that is reported in previous works. The velocity distribution of its galaxies reveals the existence of two structures in its line of sight, one with sigma(nu) similar to 223 km s(-1) and another with sigma(nu) similar to 235 km s(-1), with a difference in velocity of similar to 820 km s(-1). The main structure is dominated by passive galaxies, while these represent similar to 60% of the second structure. The X-ray temperature for the intragroup medium of a group with such a velocity dispersion is expected to be kT similar to 0.5-1 keV, against the observed value of kT similar to 1.9 keV reported in the literature. This result makes UGC 842 a special case among fossil groups because (1) it represents more likely the interaction between two small groups, which warms the intragroup medium and/or (2) it could constitute evidence that member galaxies lost energy in the process of spiraling toward the group center, and decreased the velocity dispersion of the system. As far as we know, UGC 842 is the first low-mass fossil group studied in detail.
Resumo:
A large sample of Herbig Ae/Be (HAeBe) candidates, distributed in different Galactic regions south to declination +30 degrees, were identified by the Pico dos Dias Survey (a search for young stellar objects based on IRAS colors). Most of the candidates are nearby or associated with star-forming clouds, but several others are considered isolated objects. Aiming to verify the young nature of 93 HAeBe candidates, we searched for additional information that could be useful to confirm if they are pre-main-sequence (PMS) stars or evolved objects, which coincidentally show similar IRAS colors. By adopting a spectral index that is related to the amount of infrared excess and the shape of the spectral energy distribution, we have classified the sample according to three groups, which are analyzed on the basis of (1) circumstellar luminosity; (2) spatial distribution; (3) optical polarization; (4) near-infrared colors; (5) stellar parameters (mass, age, effective temperature); and (5) intensity of emission lines. Our analysis indicates that only 76% of the studied sample, mainly the group with intermediate to low levels of circumstellar emission, can be more confidently considered PMS stars. The nature of the remaining stars, which are in the other group that contains the highest levels of infrared excess, remains to be confirmed. They share the same characteristics of evolved objects, requiring complementary studies in order to correctly classify them. At least seven objects show characteristics typical of post-asymptotic giant branch or proto-planetary nebulae.
Resumo:
Context. NGC 6522 has been the first metal-poor globular cluster identified in the bulge by Baade. Despite its importance, very few high-resolution abundance analyses of stars in this cluster are available. The bulge metal-poor clusters may be important tracers of the early chemical enrichment of the Galaxy. Aims. The main purpose of this study is to determine metallicity and elemental ratios in individual stars of NGC 6522. Methods. High-resolution spectra of 8 giants of the bulge's globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with the FLAMES+GIRAFFE spectrograph. Multiband V, I, J, K(s) photometry was used to derive effective temperatures as reference values. Spectroscopic parameters were derived from Fe I and Fe II lines, and adopted for the derivation of abundance ratios. Results. The present analysis provides a metallicity [Fe/H] = -1.0 +/- 0.2. The alpha-elements oxygen, magnesium and silicon show [O/Fe] = +0.4 +/- 0.3, [Mg/Fe] = [Si/Fe] = +0.25 +/- 0.15, whereas calcium and titanium show shallower ratios of [Ca/Fe] = [Ti/Fe] = +0.15 +/- 0.15. The neutron-capture r-process element europium appears to be overabundant by [Eu/Fe] = +0.4 +/- 0.4. The neutron-capture s-elements lanthanum and barium are enhanced by [La/Fe] = +0.35 +/- 0.2 and [Ba/Fe] = +0.5 +/- 0.5. The large internal errors, indicating the large star-to-star variation in the barium and europium abundances, are also discussed. Conclusions. The moderate metallicity combined to a blue horizontal branch (BHB), are characteristics similar to those of HP 1 and NGC 6558, pointing to a population of very old globular clusters in the Galactic bulge. Also, the abundance ratios in NGC 6522 resemble those in HP 1 and NGC 6558. The ultimate conclusion is that the bulge is old, and went through an early prompt chemical enrichment.
Resumo:
Aims. The CMa R1 star-forming region contains several compact clusters as well as many young early-B stars. It is associated with a well-known bright rimmed nebula, the nature of which is unclear (fossil HII region or supernova remnant). To help elucidate the nature of the nebula, our goal was to reconstruct the star-formation history of the CMa R1 region, including the previously unknown older, fainter low-mass stellar population, using X-rays. Methods. We analyzed images obtained with the ROSAT satellite, covering similar to 5 sq. deg. Complementary VRI photometry was performed with the Gemini South telescope. Colour-magnitude and colour-colour diagrams were used in conjunction with pre-main sequence evolutionary tracks to derive the masses and ages of the X-ray sources. Results. The ROSAT images show two distinct clusters. One is associated with the known optical clusters near Z CMa, to which similar to 40 members are added. The other, which we name the ""GU CMa"" cluster, is new, and contains similar to 60 members. The ROSAT sources are young stars with masses down to M(star) similar to 0.5 M(circle dot), and ages up to 10 Myr. The mass functions of the two clusters are similar, but the GU CMa cluster is older than the cluster around Z CMa by at least a few Myr. Also, the GU CMa cluster is away from any molecular cloud, implying that star formation must have ceased; on the contrary (as already known), star formation is very active in the Z CMa region.
Resumo:
Context. Tight binaries discovered in young, nearby associations are ideal targets for providing dynamical mass measurements to test the physics of evolutionary models at young ages and very low masses. Aims. We report the binarity of TWA22 for the first time. We aim at monitoring the orbit of this young and tight system to determine its total dynamical mass using an accurate distance determination. We also intend to characterize the physical properties (luminosity, effective temperature, and surface gravity) of each component based on near-infrared photometric and spectroscopic observations. Methods. We used the adaptive-optics assisted imager NACO to resolve the components, to monitor the complete orbit and to obtain the relative near-infrared photometry of TWA22 AB. The adaptive-optics assisted integral field spectrometer SINFONI was also used to obtain medium-resolution (R(lambda) = 1500-2000) spectra in JHK bands. Comparison with empirical and synthetic librairies were necessary for deriving the spectral type, the effective temperature, and the surface gravity for each component of the system. Results. Based on an accurate trigonometric distance (17.5 +/- 0.2 pc) determination, we infer a total dynamical mass of 220 +/- 21 M(Jup) for the system. From the complete set of spectra, we find an effective temperature T(eff) = 2900(-200)(+200) K for TWA22A and T(eff) = 2900(-100)(+200) for TWA22 B and surface gravities between 4.0 and 5.5 dex. From our photometry and an M6 +/- 1 spectral type for both components, we find luminosities of log(L/L(circle dot)) = -2.11 +/- 0.13 dex and log(L/L(circle dot)) = -2.30 +/- 0.16 dex for TWA22 A and B, respectively. By comparing these parameters with evolutionary models, we question the age and the multiplicity of this system. We also discuss a possible underestimation of the mass predicted by evolutionary models for young stars close to the substellar boundary.
Resumo:
Aims. To detect line effects using spectropolarimetry in order to find evidence of rotating disks and their respective symmetry axes in T Tauri stars. Methods. We used the IAGPOL imaging polarimeter along with the Eucalyptus-IFU to obtain spectropolarimetric measurements of the T Tauri stars RY Tau (two epochs) and PX Vul (one epoch). Evidence of line effects showing a loop in the Q-U diagram favors a compact rather than an extended source for the line photons in a rotating disk. In addition, the polarization position angle (PA) obtained using the line effect can constrain the symmetry axis of the disk. Results. RY Tau shows a variable H alpha double peak in 2004-2005 data. A polarization line effect is evident in the Q-U diagram for both epochs confirming a clockwise rotating disk. A single loop is evident in 2004 changing to a linear excursion plus a loop in 2005. Interestingly, the intrinsic PA calculated using the line effect is consistent between our two epochs (similar to 167 degrees). An alternative intrinsic PA computed from the interstellar polarization-corrected continuum and averaged between 2001-2005 yielded a PA similar to 137 degrees. This last value is closer to perpendicular to the observed disk direction (similar to 25 degrees), as expected from single scattering in an optically thin disk. For PX Vul, we detected spectral variability in H alpha along with non-variable continuum polarization when compared with previous data. The Q-U diagram shows a well-defined loop in H alpha associated with a counter-clockwise rotating disk. The symmetry axis inferred from the line effect has a PA similar to 91 degrees (with an ambiguity of 90 degrees). Our results confirm previous evidence that the emission line in T Tauri stars has its origin in a compact source scattered off a rotating accretion disk.
Resumo:
The VISTA near infrared survey of the Magellanic System (VMC) will provide deep YJK(s) photometry reaching stars in the oldest turn-off point throughout the Magellanic Clouds (MCs). As part of the preparation for the survey, we aim to access the accuracy in the star formation history (SFH) that can be expected from VMC data, in particular for the Large Magellanic Cloud (LMC). To this aim, we first simulate VMC images containing not only the LMC stellar populations but also the foreground Milky Way (MW) stars and background galaxies. The simulations cover the whole range of density of LMC field stars. We then perform aperture photometry over these simulated images, access the expected levels of photometric errors and incompleteness, and apply the classical technique of SFH-recovery based on the reconstruction of colour-magnitude diagrams (CMD) via the minimisation of a chi-squared-like statistics. We verify that the foreground MW stars are accurately recovered by the minimisation algorithms, whereas the background galaxies can be largely eliminated from the CMD analysis due to their particular colours and morphologies. We then evaluate the expected errors in the recovered star formation rate as a function of stellar age, SFR(t), starting from models with a known age-metallicity relation (AMR). It turns out that, for a given sky area, the random errors for ages older than similar to 0.4 Gyr seem to be independent of the crowding. This can be explained by a counterbalancing effect between the loss of stars from a decrease in the completeness and the gain of stars from an increase in the stellar density. For a spatial resolution of similar to 0.1 deg(2), the random errors in SFR(t) will be below 20% for this wide range of ages. On the other hand, due to the lower stellar statistics for stars younger than similar to 0.4 Gyr, the outer LMC regions will require larger areas to achieve the same level of accuracy in the SFR( t). If we consider the AMR as unknown, the SFH-recovery algorithm is able to accurately recover the input AMR, at the price of an increase of random errors in the SFR(t) by a factor of about 2.5. Experiments of SFH-recovery performed for varying distance modulus and reddening indicate that these parameters can be determined with (relative) accuracies of Delta(m-M)(0) similar to 0.02 mag and Delta E(B-V) similar to 0.01 mag, for each individual field over the LMC. The propagation of these errors in the SFR(t) implies systematic errors below 30%. This level of accuracy in the SFR(t) can reveal significant imprints in the dynamical evolution of this unique and nearby stellar system, as well as possible signatures of the past interaction between the MCs and the MW.
Resumo:
Context. VISTA Variables in the Via Lactea (VVV) is one of the six ESO Public Surveys operating on the new 4-m Visible and Infrared Survey Telescope for Astronomy (VISTA). VVV is scanning the Milky Way bulge and an adjacent section of the disk, where star formation activity is high. One of the principal goals of the VVV Survey is to find new star clusters of different ages. Aims. In order to trace the early epochs of star cluster formation we concentrated our search in the directions to those of known star formation regions, masers, radio, and infrared sources. Methods. The disk area covered by VVV was visually inspected using the pipeline processed and calibrated K(S)-band tile images for stellar over-densities. Subsequently, we examined the composite JHK(S) and ZJK(S) color images of each candidate. PSF photometry of 15 x 15 arcmin fields centered on the candidates was then performed on the Cambridge Astronomy Survey Unit reduced images. After statistical field-star decontamination, color-magnitude and color-color diagrams were constructed and analyzed. Results. We report the discovery of 96 new infrared open clusters and stellar groups. Most of the new cluster candidates are faint and compact (with small angular sizes), highly reddened, and younger than 5 Myr. For relatively well populated cluster candidates we derived their fundamental parameters such as reddening, distance, and age by fitting the solar-metallicity Padova isochrones to the color-magnitude diagrams.
Resumo:
The filamentous fungus Trichoderma harzianum has a considerable cellulolytic activity that is mediated by a complex of enzymes which are essential for the hydrolysis of microcrystalline cellulose. These enzymes were produced by the induction of T. harzianum with microcrystalline cellulose (Avicel) under submerged fermentation in a bioreactor. The catalytic core domain (CCD) of cellobiohydrolase I (CBHI) was purified from the extracellular extracts and submitted to robotic crystallization. Diffraction-quality CBHI CCD crystals were grown and an X-ray diffraction data set was collected under cryogenic conditions using a synchrotron-radiation source.
Resumo:
The Brazilian Synchrotron Light Laboratory [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP, Brazil] is the first commissioned synchrotron light source in the southern hemisphere. The first wiggler macromolecular crystallography beamline (MX2) at the LNLS has been recently constructed and brought into operation. Here the technical design, experimental set-up, parameters of the beamline and the first experimental results obtained at MX2 are described. The beamline operates on a 2.0 T hybrid 30-pole wiggler, and its optical layout includes collimating mirror, Si( 111) double-crystal monochromator and toroidal bendable mirror. The measured flux density at the sample position at 8.7 eV reaches 4.8 x 10(11) photons s(-1) mm(-2) (100 mA)(-1). The beamline is equipped with a MarResearch Desktop Beamline Goniostat (MarDTB) and 3 x 3 MarMosaic225 CCD detector, and is controlled by a customized version of the Blu-Ice software. A description of the first X-ray diffraction data sets collected at the MX2 LNLS beamline and used for macromolecular crystal structure solution is also provided.
Resumo:
Chlorocatechol 1,2-dioxygenase from the Gram-negative bacterium Pseudomonas putida (Pp 1,2-CCD) is considered to be an important biotechnological tool owing to its ability to process a broad spectrum of organic pollutants. In the current work, the crystallization, crystallographic characterization and phasing of the recombinant Pp 1,2-CCD enzyme are described. Reddish-brown crystals were obtained in the presence of polyethylene glycol and magnesium acetate by utilizing the vapour-diffusion technique in sitting drops. Crystal dehydration was the key step in obtaining data sets, which were collected on the D03B-MX2 beamline at the CNPEM/MCT - LNLS using a MAR CCD detector. Pp 1,2-CCD crystals belonged to space group P6(1)22 and the crystallographic structure of Pp 1,2-CCD has been solved by the MR-SAD technique using Fe atoms as scattering centres and the coordinates of 3-chlorocatechol 1,2-dioxygenase from Rhodococcus opacus (PDB entry
Resumo:
The wetting of Ti-Cu alloys on Si3N4 was analyzed by the sessile drop method, using an imaging system with a CCD camera during the heating under argon flow. The contact angle was measured as a function of temperature and time. The samples were cut transversally and characterized by scanning electron microscopy and energy dispersive spectrometry (SEM/EDS). Wettability of the Ti-Cu alloy on Si3N4 is influenced by the reaction between the Ti and the ceramic. The TC1 and TC2 alloys presented low final contact angle values around 2 degrees and 26 degrees, respectively, indicating good wetting on Si3N4. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Surface heat treatment in glasses and ceramics, using CO(2) lasers, has attracted the attention of several researchers around the world due to its impact in technological applications, such as lab-on-a-chip devices, diffraction gratings and microlenses. Microlens fabrication on a glass surface has been studied mainly due to its importance in optical devices (fiber coupling, CCD signal enhancement, etc). The goal of this work is to present a systematic study of the conditions for microlens fabrications, along with the viability of using microlens arrays, recorded on the glass surface, as bidimensional codes for product identification. This would allow the production of codes without any residues (like the fine powder generated by laser ablation) and resistance to an aggressive environment, such as sterilization processes. The microlens arrays were fabricated using a continuous wave CO(2) laser, focused on the surface of flat commercial soda-lime silicate glass substrates. The fabrication conditions were studied based on laser power, heating time and microlens profiles. A He-Ne laser was used as a light source in a qualitative experiment to test the viability of using the microlenses as bidimensional codes.
Resumo:
Objectives: We tested two novel drug-eluting stents (DES), covered with a biodegradable-polymer carrier and releasing paclitaxel or sirolimus, which were compared against a bare metal stent (primary objective). The DES differed by the drug, but were identical otherwise, allowing to compare the anti-restenosis effects of sirolimus versus paclitaxel (secondary objective). Background: The efficacy of novel DES with biodegradable polymers should be tested in the context of randomized trials, even when using drugs known to be effective, such as sirolimus and paclitaxel. Methods: Overall, 274 patients with de novo coronary lesions in native vessels scheduled for stent implantation were randomly assigned (2:21 ratio) for the paclitaxel (n = 111), sirolimus (n = 106), or bare metal stent (n = 57) groups. Angiographic follow-up was obtained at 9 months and major cardiac adverse events up to 12 months. Results: Both paclitaxel and sirolimus stents reduced the 9-month in-stent late loss (0.54-0.44 mm, 0.32-0.43 mm, vs. 0.90-0.45 mm respectively), and 1-year risk of target vessel revascularization and combined major adverse cardiac events (P < 0.05 for both, in all comparisons), compared with controls. Sirolimus stents had lower late loss than paclitaxel stents (P < 0.01), but similar 1-year clinical outcomes. There were no differences in the risk of death, infarction, or stent thrombosis among the study groups. Conclusion: Both novel DES were effective in reducing neointimal hyperplasia and 1-year re-intervention, compared to bare metal stents. Our findings also suggest that sirolimus is more effective than paclitaxel in reducing angiographic neointima, although this effect was not associated with better clinical outcomes. (C) 2009 Wiley-Liss, Inc.
Resumo:
Optical diagnostic methods, such as near-infrared Raman spectroscopy allow quantification and evaluation of human affecting diseases, which could be useful in identifying and diagnosing atherosclerosis in coronary arteries. The goal of the present work is to apply Independent Component Analysis (ICA) for data reduction and feature extraction of Raman spectra and to perform the Mahalanobis distance for group classification according to histopathology, obtaining feasible diagnostic information to detect atheromatous plaque. An 830nm Ti:sapphire laser pumped by an argon laser provides near-infrared excitation. A spectrograph disperses light scattered from arterial tissues over a liquid-nitrogen cooled CCD to detect the Raman spectra. A total of 111 spectra from arterial fragments were utilized.