67 resultados para 1D and 2D NMR
Resumo:
The present work shows study of the CO(2) capture by amidines DBN and PMDBD using (13)C solid-state NMR and thermal techniques. The solid state (13)C NMR analyses demonstrate the formation of a single PMDBD-CO(2) product which was assigned to stable bicarbonate. In the case of DBN, it is shown that two DBN-CO(2) products are formed, which are suggested to be stable bicarbonate and unstable carbamate. The role of water in the DBN-CO(2) capture as well as the stability of the products to environmental moisture was also investigated. The results suggest that the carbamate formation is favored in dry DBN, but in the presence of water it decompose to form bicarbonate. Thermal analysis shows a good gravimetric CO(2) absorption of DBN. Release of CO(2) was found to be almost quantitative from the PMDBDH(+) bicarbonate about 110 degrees C.
Resumo:
The successful measurements of a sublattice magnetism with (51)V NMR techniques in the sigma-phase Fe(100-x)V(x) alloys with x=34.4, 39.9, and 47.9 are reported. Vanadium atoms, which were revealed to be present on all five crystallographic sites, are found to be under the action of the hyperfine magnetic fields produced by the neighboring Fe atoms, which allow the observation of (51)V NMR signals. Their nuclear magnetic properties are characteristic of a given site, which strongly depend on the composition. Site A exhibits the strongest magnetism while site D is the weakest. The estimated average magnetic moment per V atom decreases from 0.36 mu(B) for x=34.4 to 0.20 mu(B) for x=47.9. The magnetism revealed at V atoms is linearly correlated with the magnetic moment of Fe atoms, which implies that the former is induced by the latter.
Resumo:
In this article, we evaluate the use of simple Lee-Goldburg cross-polarization (LG-CP) NMR experiments for obtaining quantitative information of molecular motion in the intermediate regime. In particular, we introduce the measurement of Hartmann-Hahn matching profiles for the assessment of heteronuclear dipolar couplings as well as dynamics as a reliable and robust alternative to the more common analysis of build-up curves. We have carried out dynamic spin dynamics simulations in order to test the method's sensitivity to intermediate motion and address its limitations concerning possible experimental imperfections. We further demonstrate the successful use of simple theoretical concepts, most prominently Anderson-Weiss (AW) theory, to analyze the data. We further propose an alternative way to estimate activation energies of molecular motions, based upon the acquisition of only two LG-CP spectra per temperature at different temperatures. As experimental tests, molecular jumps in imidazole methyl sulfonate, trimethylsulfoxonium iodide, and bisphenol A polycarbonate were investigated with the new method.
Resumo:
Most post-processors for boundary element (BE) analysis use an auxiliary domain mesh to display domain results, working against the profitable modelling process of a pure boundary discretization. This paper introduces a novel visualization technique which preserves the basic properties of the boundary element methods. The proposed algorithm does not require any domain discretization and is based on the direct and automatic identification of isolines. Another critical aspect of the visualization of domain results in BE analysis is the effort required to evaluate results in interior points. In order to tackle this issue, the present article also provides a comparison between the performance of two different BE formulations (conventional and hybrid). In addition, this paper presents an overview of the most common post-processing and visualization techniques in BE analysis, such as the classical algorithms of scan line and the interpolation over a domain discretization. The results presented herein show that the proposed algorithm offers a very high performance compared with other visualization procedures.
Resumo:
This work deals with the determination of crack openings in 2D reinforced concrete structures using the Finite Element Method with a smeared rotating crack model or an embedded crack model In the smeared crack model, the strong discontinuity associated with the crack is spread throughout the finite element As is well known, the continuity of the displacement field assumed for these models is incompatible with the actual discontinuity However, this type of model has been used extensively due to the relative computational simplicity it provides by treating cracks in a continuum framework, as well as the reportedly good predictions of reinforced concrete members` structural behavior On the other hand, by enriching the displacement field within each finite element crossed by the crack path, the embedded crack model is able to describe the effects of actual discontinuities (cracks) This paper presents a comparative study of the abilities of these 2D models in predicting the mechanical behavior of reinforced concrete structures Structural responses are compared with experimental results from the literature, including crack patterns, crack openings and rebar stresses predicted by both models
Resumo:
The effect of varying the geometric parameters of helical strakes on vortex-induced vibration (VIV) is investigated in this paper. The degree of oscillation attenuation or even suppression is analysed for isolated circular cylinder cases. How a cylinder fitted with strakes behaves when immersed in the wake of another cylinder in tandem arrangement is also investigated and these results are compared to those with a single straked cylinder. The experimental tests are conducted at a circulating water channel facility and the cylindrical models are mounted on a low-damping air bearing elastic base with one degree-of-freedom, restricted to oscillate in the transverse direction to the channel flow. Three strake pitches (p) and heights (h) are tested: p = 5, 10, 15d, and h = 0.1, 0.2, 0.25d. The mass ratio is 1.8 for all models. The Reynolds number range is from 1000 to 10000, and the reduced velocity varies up to 21. The cases with h = 0.1d strakes reduce the amplitude response when compared to the isolated plain cylinder, however the oscillation still persists. On the other hand, the cases with h = 0.2, 0.25d strakes almost completely suppress VIV. Spanwise vorticity fields, obtained through stereoscopic digital particle image velocimetry (SDPIV), show an alternating vortex wake for the p = 10d and h = 0.1d straked cylinder. The p = 10d and h = 0.2d cylinder wake has separated shear layers with constant width and no roll-up close to the body. The strakes do not increase the magnitude of the out-of-plane velocity compared to the isolated plain cylinder. However, they deflect the flow in the out-of-plane direction in a controlled way, which can prevent the vortex shedding correlation along the span. In order to investigate the wake interference effect on the strake efficiency, an experimental arrangement with two cylinders in tandem is employed. The centre-to-centre distance for the tandem arrangement varies from 2 to 6. When the downstream p = 10d and h = 0.2d cylinder is immersed in the wake of an upstream fixed plain cylinder, it loses its effectiveness compared with the isolated case. Although the oscillations have significant amplitude, they are limited, which is a different behaviour from that of a tandem configuration with two plain cylinders. For this particular case, the amplitude response monotonically increases for all gaps, except one, a trait usually found in galloping-like oscillations. SDPIV results for the tandem arrangements show alternating vortex shedding and oscillatory wake. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Urban rainfall-runoff residuals contain metals such as Cr, Zn, Cu, As, Pb and Cd and are thus reasonable candidates for treatment using Portland cement-based solidification-stabilization (S/S). This research is a study of S/S of urban storm water runoff solid residuals in Portland cement with quicklime and sodium bentonite additives. The solidified residuals were analyzed after 28 days of hydration time using X-ray powder diffraction (XRD) and solid-state Si-29 nuclear magnetic resonance (NMR) spectroscopy. X-ray diffraction (XRD) results indicate that the main cement hydration products are ettringite, calcium hydroxide and hydrated calcium silicates. Zinc hydroxide and lead and zinc silicates are also present due to the reactions of the waste compounds with the cement and its hydration products. Si-29 NMR analysis shows that the coarse fraction of the waste apparently does not interfere with cement hydration, but the fine fraction retards silica polymerization.
Resumo:
In this work we report on a study of the morphological changes of LDL induced in vitro by metallic ions (Cu(2+) and Fe(3+)). These modifications were characterized by transmission electron microscopy, nuclear magnetic resonance and the Z-scan technique. The degree of oxidative modification of LDL was determined by the TBARS and lipid hydroperoxides assays. It is shown that distinct pathways for modifying lipoproteins lead to different morphological transformations of the particles characterized by changes in size and/or shape of the resulting particles, and by the tendency to induce aggregation of the particles. There were no evidence of melting of particles promoted by oxidative processes with Cu and Fe. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A nuclear magnetic resonance ((1)H NMR) method for the determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental aqueous samples was developed and validated. L-BMAA is a neurotoxic modified amino acid that can be produced by cyanobacteria in aqueous environments. This toxin was extracted from samples by means of solid-phase extraction (SPE) and identified and quantified by (1)H NMR without further derivatization steps. The lower limit of quantification (LLOQ) was 5 mu g/mL Good inter and intra-assay precision was also observed (relative standard deviation <8.5%) with the use of 4-nitro-DL-phenylalanine as an internal standard (IS). This method of 1H NMR analysis is not time consuming and can be readily utilized to monitor L-BMAA and confirm its presence in environmental and biological samples. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A complete analysis of H-1 and C-13 NMR spectra of the trypanocidal sesquiterpene lactone eremantholide C and two of its analogues is described. These structurally similar sesquiterpene lactones were submitted to H-1 NMR, C-13 (H-1) NMR, gCOSY, gHSQC, gHMBC, J-resolved and DPFGSE-NOE NMR techniques. The detailed analysis of those results, correlated to some computational calculations (molecular mechanics), led to the total and unequivocal assignment of all H-1 and C-13 NMR data. The determination of all H-1/H-1 coupling constants and all signal multiplicities, together with the elimination of previous ambiguities were also achieved. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
A new and promising nitrosyl ruthenium complex, [Ru(NO)(bdqi-COOH)(terpy)](PF(6))(3), bdqi-COOH is 3,4-diiminebenzoic acid and terpy is 2,2`-terpyridine, has been synthesized as a NO donor agent. The procedure used for [Ru(NO)(bdqi-COOH)(terpy)](PF(6))(3) synthesis has, apparently, yielded the formation of two isomers in which the ligand bdqi-COOH appears to be coordinated in its reduced form (bdcat-COOH), which could have differences in their pharmacological properties. Therefore, it was intended to separate the two possible isomers by high-performance liquid chromatography (HPLC) and to characterize them by high resolution mass spectrometry (QTOF MS) and by magnetic nuclear resonance spectroscopy (NMR). The results obtained by MS showed that the ESI-MS mass spectra of both HPLC column fractions, e.g. peak 1 and peak 2, are essentially equal, showing that both isomers display nearly identical gas-phase behavior with clusters of isotopologue ions centered at m/z 573, m/z 543 and m/z 513. Regarding the NMR analysis, the results showed that the positional isomerism is located in the bdqi-COOH ligand. From the observed results it can be concluded that the synthesis procedure that has been used results in the formation of two [Ru(terpy)(bdqi-COOH)NO](PF(6))(3) isomers. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Time-averaged conformations of (+/-)-1-[3,4-(methylenedioxy)phenyl]-2-methylaminopropane hydrochloride (MDMA, ""ecstasy"") in D(2)O, and of its free base and trifluoroacetate in CDCl(3), were deduced from their (1)H NMR spectra and used to calculate their conformer distribution. Their rotational potential energy surface (PES) was calculated at the RHF/6-31G(d,p), 133LYP/6-31G(d,p), B3LYP/cc-pVDZ and AM1 levels. Solvent effects were evaluated using the polarizable continuum model. The NMR and theoretical studies showed that, in the free base, the N-methyl group and the ring are preferentially trans. This preference is stronger in the salts and corresponds to the X-ray structure of the hydrochloride. However, the energy barriers separating these forms are very low. The X-ray diffraction crystal structures of the anhydrous salt and its monohydrate differed mainly in the trans or cis relationship of the N-methyl group to the a-methyl, although these two forms interconvert freely in solution. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The direct E/Z configuration assignment of tri- and tetra-substituted stilbenes (and other analogous olefins) when only one of the isomers is available is a quite challenging task. Sometimes, a chemical transformation or some other tedious method is necessary for determination of the double bond substitution pattern. In this paper, we relied on theoretical calculation of chemical shifts as a complementary tool for (1)H NMR determination of the configuration of an alpha-phenylcinnamic acid prepared as a unique isomer by the Perkin reaction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE- To determine whether obesity increases platelet reactivity and thrombin activity in patients with type 2 diabetes plus stable coronary artery disease. RESEARCH DESIGN AND METHODS- We assessed platelet reactivity and markers of thrombin generation and activity in 193 patients from nine clinical sites of the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D). Blood taken at the time of enrollment was used for assay of the concentration of prothrombin fragment 1.2 (PT1.2, released when prothrombin is activated) and fibrinopeptide A (FPA, released when fibrinogen is cleaved). Platelet activation was identified with the use of flow cytometry in response to 0, 0.2, and 1 mu mol/l adenosine diphosphate (ADP). RESULTS- Concentrations of FPA, PT1.2, and platelet activation in the absence of agonist were low. Greater BMI was associated with higher platelet reactivity in response to 1 mu m ADP as assessed by surface expression of P-selectin (r = 0.29, P < 0.0001) but not reflected by the binding of fibrinogen to activated glycoprotein IIb-IIIa. BMI was not associated with concentrations of FPA or PT1.2. Platelet reactivity correlated negatively with A1C (P < 0.04), was not related to the concentration Of triglycerides in blood, and did not correlate with the concentration of C-reactive peptide. CONCLUSIONS- Among patients enrolled in this substudy of BARI 2D, a greater BMI was associated with higher platelet reactivity at the time of enrollment. Our results suggest that obesity and insulin resistance that accompanies obesity may influence platelet reactivity in patients with type 2 diabetes.
Resumo:
We evaluated the associations between glycemic therapies and prevalence of diabetic peripheral neuropathy (DPN) at baseline among participants in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial on medical and revascularization therapies for coronary artery disease (CAD) and on insulin-sensitizing vs. insulin-providing treatments for diabetes. A total of 2,368 patients with type 2 diabetes and CAD was evaluated. DPN was defined as clinical examination score > 2 using the Michigan Neuropathy Screening Instrument (MNSI). DPN odds ratios across different groups of glycemic therapy were evaluated by multiple logistic regression adjusted for multiple covariates including age, sex, hemoglobin A1c (HbA1c), and diabetes duration. Fifty-one percent of BARI 2D subjects with valid baseline characteristics and MNSI scores had DPN. After adjusting for all variables, use of insulin was significantly associated with DPN (OR = 1.57, 95% CI: 1.15-2.13). Patients on sulfonylurea (SU) or combination of SU/metformin (Met)/thiazolidinediones (TZD) had marginally higher rates of DPN than the Met/TZD group. This cross-sectional study in a cohort of patients with type 2 diabetes and CAD showed association of insulin use with higher DPN prevalence, independent of disease duration, glycemic control, and other characteristics. The causality between a glycemic control strategy and DPN cannot be evaluated in this cross-sectional study, but continued assessment of DPN and randomized therapies in BARI 2D trial may provide further explanations on the development of DPN.