385 resultados para SCANNING
Resumo:
The aim of this in vitro study was to evaluate qualitatively the surface morphology of enamel bleached with 35% hydrogen peroxide (HP) followed by application of fluoridated agents. Forty intact pre molars were randomly distributed into four groups (n = 10), treated as follows: Group I (control group) remained stored in artificial saliva at 37 degrees C, Group II - 35% HP; Group III - 35% HP + acidulated fluoride (1.23%) and Group IV - 35% HP + neutral fluoride (2%). The experimental groups received three applications of bleaching gel and after the last application all specimens were polished. This procedure was repeated after 7 and 14 days, and during the intervals of applications, the specimens were stored in artificial saliva at 37 degrees C. Scanning electron microscopy (SEM) analysis showed superficial irregularities and porosities to varying degrees in bleached enamel compared to control group. Sample evaluation was made by attributing scores, and data were statistically analyzed using Kruskal-Wallis and Dunn tests (P < 0.05). SEM qualitative investigation demonstrated that 35% hydrogen peroxide affected human dental enamel morphology, producing porosities, depressions, and superficial irregularities at various degrees. These morphological changes were higher after the application of 1.23% acidulated fluoride gel. Microsc. Res. Tech. 74:512-516, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Introduction: The aim of the present study was to test the accuracy of small-volume cone-beam computed tomography (CBCT) scanning in the detection of horizontal root fractures and to assess the influence of a metallic post. Methods: Forty teeth were divided into four groups based on the presence of metallic posts and horizontal root fracture. The teeth were examined by small-volume CBCT scanning at 0.2-mm voxel resolution. Three observers analyzed the samples for the presence of a horizontal root fracture. Sensitivity and specificity were calculated. Results: High values for accuracy (73%-88%) were obtained in the groups without a metallic post, and statistically significant differences were found when the group with a metallic post has been observed (55%-70%). Intraobserver agreement also showed statistically significant differences in the groups with a metallic post. Conclusions: Small-volume CBCT scanning showed high accuracy in detecting horizontal root fracture without a metallic post. However, the presence of a metallic post significantly reduced the specificity and sensitivity of this examination. (J Endod 2011;37:1456-1459)
Resumo:
Lymphangiomas are benign nonencapsulated lesions composed of sequestered noncommunicating lymphoid tissue lined by lymphatic endothelium and are thought to be caused by congenital obstruction of lymphatic drainage. They are subclassified by vessel size, such as the capillary, which is rare and located in subcutaneous tissue, cavernous (located about the mouth and tongue), and cystic (cystic hygromas). The cystic hygromas show a predilection for the neck (75%) and maxilla (20%), and the remaining 5% arise in rare locations such as the mediastinum, retroperitoneum, bone, kidney, colon, liver, spleen and scrotum. Only 3%-10% of neck lesions extend into the mediastinum. In this paper, we report a rare case of cystic hygroma with a huge dimension discussing the use of computed tomography scanning for diagnosis.
Resumo:
The objective was to evaluate the influence of dental metallic artefacts on implant sites using multislice and cone-beam computed tomography techniques. Ten dried human mandibles were scanned twice by each technique, with and without dental metallic artefacts. Metallic restorations were placed at the top of the alveolar ridge adjacent to the mental foramen region for the second scanning. Linear measurements (thickness and height) for each cross-section were performed by a single examiner using computer software. All mandibles were analysed at both the right and the left mental foramen regions. For the multislice technique, dental metallic artefact produced an increase of 5% in bone thickness and a reduction of 6% in bone height; no significant differences (p > 0.05) were detected when comparing measurements performed with and without metallic artefacts. With respect to the cone-beam technique, dental metallic artefact produced an increase of 6% in bone thickness and a reduction of 0.68% in bone height. No significant differences (p > 0.05) were observed when comparing measurements performed with and without metallic artefacts. The presence of dental metallic artefacts did not alter the linear measurements obtained with both techniques, although its presence made the location of the alveolar bone crest more difficult.
Resumo:
Purpose: The present study assessed damage to the inferior alveolar nerve (IAN) following nerve lateralization and implant placement surgery through optical and transmission electron microscopy (TEM). Materials and Methods: IAN lateralization was performed in 16 adult female rabbits (Oryctolagus cuniculus). During the nerve lateralization procedure, one implant was placed through the mandibular canal, and the IAN was replaced in direct contact with the implant The implant was placed in the right mandible, and the left side was used as a control (no surgical procedure) After 8 weeks, the animals were sacrificed and samples were prepared for optical and TEM analysis of IAN structural damage Histomorphometric analysis was performed to determine the number and cross-sectional dimensions of nerve fascicles and myelin sheath thickness between experimental and control grouos. The different parameters were compared by one-way analysis of variance at the 95% significance level Results: Alterations in the perineural and endoneural regions of the IAN, with higher degrees of vascularization., were observed in the experimental group TEM showed that the majority of the myelinated nerve fibers were not affected in the experimental samples. No significant variation in the number of fascicles was observed, significantly larger fascicle height and width were observed in the control group, and significantly thicker myelin sheaths were observed in the experimental samples Conclusion: IAN lateralization resulted in substantial degrees of tissue disorganization at the microstructural level because of the presence of edema However, at the ultrastructural level, small amounts of fiber degeneration were observed. INT J ORAL MAXILLOFAC IMPLANTS 2009,24-859-865
Resumo:
Purpose: To evaluate the influence of dentin moisture on bond strengths of an etch-and-rinse bonding agent to primary dentin clinically and in the laboratory. Methods: The sample consisted of two groups of 20 caries-free primary second molars: molars in exfoliation period (clinical group) and extracted molars (laboratory group). Class I cavities were prepared in all specimens leaving a flat dentin surface on the pulpal floor. A two-step etch-and-rinse adhesive was vigorously rubbed on either dry (n= 5) or wet demineralized dentin (n= 5) under clinical or laboratory conditions. After restorative procedures, the teeth from the clinical group were extracted after 20 minutes. All samples were processed and underwent microtensile bond strength test and silver nitrate uptake evaluation under scanning electron microscopy. Results: Statistically higher bond strength values were observed when the bonding was performed under laboratory conditions and on a wet demineralized dentin. Most of the failures were adhesive and mixed irrespective of the experimental condition. Silver nitrate uptake occurred in all groups irrespective of the experimental condition. Resin-dentin bond strengths produced in the laboratory in primary teeth may overestimate those produced under clinical circumstances. (Am J Dent 2011;24:221-225).
Resumo:
The aim of this work was to determine the effect of temperature and heating rate on the densification of four leucite-based dental porcelains: two low-fusion (Dentsply Ceramco and Ivoclar) and two high-fusion commercial porcelains (Dentsply Ceramco). Porcelain powders were characterized by differential thermal analysis (DTA), X-ray diffraction (XRD), particle size distribution, helium picnometry, and by scanning electron microscopy. Test specimens were sintered from 600 to 1050 degrees C, with heating rates of 55 degrees C/min and 10 degrees C/min. The bulk density of the specimens was measured by the Archimedes method in water, and microstructures of fracture surfaces were analyzed by scanning electron microscopy (SEM). The results showed that densification of specimens increased with the increase in temperature. The increase in the heating rate had no effect on the densification of the porcelains studied. Both high-fusion materials and one of the low-fusing porcelains reached the maximum densification at a temperature that was 50 degrees C lower than that recommended by the manufactures. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Purpose The aim of this study was to evaluate the ability of bond strength tests to accurately measure the bond strength of fiber posts luted into root canals Materials and Methods The test methods studied were hourglass microtensile (HM), push-out (PS), modified push out (MP) and pull out (PL) The evaluated parameters were bond strength values, reliability (using Weibull analysis), failure mode (using confocal microscopy), and stress distribution (using finite element analysis) Forty human intact single rooted and endodontically treated teeth were divided into four groups Each group was assigned one of the test methods The samples in the HM and PS groups were 1 0 +/- 0 1 mm thick, the HM samples were hourglass shaped and the PS samples were disk shaped For the PL and MP groups, each 1 mm dentin slice was luted with a fiber post piece Three dimensional models of each group were made and stress was analyzed based on Von Mises criteria Results PL provided the highest values of bond strength followed by MP both of which also had greater amounts of adhesive failures PS showed the highest frequency of cohesive failures MP showed a more homogeneous stress distribution and a higher Weibull modulus Conclusion The specimen design directly influences the biomechanical behavior of bond strength tests
Resumo:
Objectives. This study evaluated the effect of composite pre-polymerization temperature and energy density on the marginal adaptation (MA), degree of conversion (DC), flexural strength (FS), and polymer cross-linking (PCL) of a resin composite (Filtek Z350, 3M/ESPE). Methods. For MA, class V cavities (4mmx2mmx2mm) were prepared in 40 bovine incisors. The adhesive system Adper Single Bond 2 (3M/ESPE) was applied. Before being placed in the cavities, the resin composite was either kept at room-temperature (25 degrees C) or previously pre-heated to 68 degrees C in the Calset (TM) device (AdDent Inc., Danbury, CT, USA). The composite was then light polymerized for 20 or 40s at 600mW/cm(2) (12 or 24 J/cm(2), respectively). The percentage of gaps was analyzed by scanning electron microscopy, after sectioning the restorations and preparing epoxy resin replicas. DC (n = 3) was obtained by FT-Raman spectroscopy on irradiated and non-irradiated composite surfaces. FS (n = 10) was measured by the three-point-bending test. KHN (n = 6) was measured after 24h dry storage and again after immersion in 100% ethanol solution for 24 h, to calculate PCL density. Data were analyzed by appropriate statistical analyses. Results. The pre-heated composite showed better MA than the room-temperature groups. A higher number of gaps were observed in the room-temperature groups, irrespective of the energy density, mainly in the axial wall (p < 0.05). Composite pre-heating and energy density did not affect the DC, FS and PCL (p > 0.05). Significance. Pre-heating the composite prior to light polymerization similar in a clinical situation did not alter the mechanical properties and monomer conversion of the composite, but provided enhanced composite adaptation to cavity walls. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to compare the effects of Nd:YAG, Er:YAG, and diode lasers on the morphology and permeability of root canal walls. The three laser wavelengths mentioned interact differently with dentin and therefore it is possible that the permeability changes caused will determine different indications during endodontic treatment. Twenty-eight human single-rooted teeth were instrumented up to ISO 40 and divided into four groups: group C, control (GC), non-laser irradiated; group N (GN), irradiated with Nd:YAG laser; group E (GE), with Er:YAG laser and group D (GD) with diode laser. After that, the roots were filled with a 2% methylene blue dye, divided into two halves and then photographed. The images were analyzed using Image J software and the percentage of dye penetration in the cervical, middle, and apical root thirds were calculated. Additional scanning electron microscopy (SEM) analyses were also performed. The analysis of variance (ANOVA) showed significant permeability differences between all groups in the middle and cervical thirds (p < 0.05). The Tukey test showed that in the cervical third, GN presented means of dye penetration statistically significantly lower than all of the other groups. In the middle third, GE and GD showed statistically higher dye penetration means than GC and GN. SEM analysis showed melted surfaces for GN, clean wall surfaces with open dentinal tubules for GE, and mostly obliterated dentinal tubules for GD. Er:YAG (2,094 nm) laser and diode laser (808 nm) root canal irradiation increase dentinal permeability and Nd:YAG (1,064 nm) laser decreases dentin permeability, within the studied parameters.
Resumo:
Objective. To evaluate the biaxial and short-beam uniaxial strength tests applied to resin composites based upon their Weibull parameters, fractographic features and stress distribution. Methods. Disk- (15 mm x 1 mm) and beam-shaped specimens (10 mm x 2 mm x 1 mm) of three commercial composites (Concept/Vigodent, CA; Heliomolar/Ivoclar-Vivadent, HE; Z250/3M ESPE, FZ) were prepared. After 48h dry storage at 37 degrees C, disks and beams were submitted to piston-on-three-balls (BI) and three-point bending (UNI) tests, respectively. Data were analyzed by Weibull statistics. Fractured surfaces were observed under stereomicroscope and scanning electron microscope. Maximum principal stress (sigma(1)) distribution was determined by finite element analysis (FEA). Maximum sigma(1-BI) and sigma(1-UNI) were compared to FZ strengths calculated by applying the average failure loads to the analytical equations (sigma(a-BI) and sigma(a-UNI)). Results. For BI, characteristic strengths were: 169.9a (FZ), 122.4b (CA) and 104.8c (HE), and for UNI were: 160.3a (FZ), 98.2b (CA) and 91.6b (HE). Weibull moduli ( m) were similar within the same test. CA and HE presented statistically higher m for BI. Surface pores ( BI) and edge flaws ( UNI) were the most frequent fracture origins. sigma(1-BI) was 14% lower than sigma(a-BI.) sigma(1-UNI) was 43% higher than sigma(a-UNI). Significance. Compared to the short-beam uniaxial test, the biaxial test detected more differences among composites and displayed less data scattering for two of the tested materials. Also, biaxial strength was closer to the material`s strength estimated by FEA. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Provision of an inert gas atmosphere with high-purity argon gas is recommended for preventing titanium castings from contamination although the effects of the level of argon purity on the mechanical properties and the clinical performance of Ti castings have not yet been investigated. The purpose of this study was to evaluate the effect of argon purity on the mechanical properties and microstructure of commercially pure (cp) Ti and Ti-6Al-4V alloys. The castings were made using either high-purity and/or industrial argon gas. The ultimate tensile strength (UTS), proportional limit (PL), elongation (EL) and microhardness (VHN) at different depths were evaluated. The microstructure of the alloys was also revealed and the fracture mode was analyzed by scanning electron microscopy. The data from the mechanical tests and hardness were subjected to a two-and three-way ANOVA and Tukey`s test (alpha = 0.05). The mean values of mechanical properties were not affected by the argon gas purity. Higher UTS, PL and VHN, and lower EL were observed for Ti-6Al-4V. The microhardness was not influenced by the argon gas purity. The industrial argon gas can be used to cast cp Ti and Ti-6Al-4V.
Resumo:
Objectives. The aim of this study was to ultrastructurally examine the influence of simvastatin on bone healing in surgically created defects in rat mandibles. Study design. Bone defects 0.8 mm in diameter were created in the buccal aspect of first mandibular molar roots and filled with 2.5% simvastatin gel, while the controls were allowed to heal spontaneously. The rats were humanely killed 7, 9, 11, or 14 days postoperatively, and the specimens were processed for scanning and transmission electron microscopy, as well as for colloidal gold immunolabeling of osteopontin. Results. The regenerated alveolar bone in the simvastatin-treated defects presented smaller marrow spaces, and the collagen fibrils were regularly packed exhibiting a lamellar bone aspect. Osteopontin was present through the bone matrix during the wound healing and alveolar bone regeneration. Conclusion. The present study provides evidence that a single topical application of 2.5% simvastatin gel improves the quality of the new bone and decreases bone resorption. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 112: 170-179)
Resumo:
Objective. To investigate the processing induced particle alignment on fracture behavior of four multiphase dental ceramics (one porcelain, two glass-ceramics and a glass-infiltrated-alumina composite). Methods. Disks (empty set12mm x 1.1 mm-thick) and bars (3 mm x 4 mm x 20 mm) of each material were processed according to manufacturer instructions, machined and polished. Fracture toughness (K(IC)) was determined by the indentation strength method using 3-point bending and biaxial flexure fixtures for the fracture of bars and disks, respectively. Microstructural and fractographic analyses were performed with scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Results. The isotropic microstructure of the porcelain and the leucite-based glass-ceramic resulted in similar fracture toughness values regardless of the specimen geometry. On the other hand, materials containing second-phase particles with high aspect ratio (lithium disilicate glass-ceramic and glass-infiltrated-alumina composite) showed lower fracture toughness for disk specimens compared to bars. For the lithium disilicate glass-ceramic disks, it was demonstrated that the occurrence of particle alignment during the heat-pressing procedure resulted in an unfavorable pattern that created weak microstructural paths during the biaxial test. For the glass-infiltrated-alumina composite, the microstructural analysis showed that the large alumina platelets tended to align their large surfaces perpendicularly to the direction of particle deposition during slip casting of green preforms. Significance. The fracture toughness of dental ceramics with anisotropic microstructure should be determined by means of biaxial testing, since it results in lower values. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To determine the influence of rate of polymerization, degree of conversion and volumetric shrinkage on stress development by varying the amount of photoinitiators in a model composite. Methods: Volumetric shrinkage (with a mercury dilatometer), degree of conversion, maximum rate of reaction (RP(max)) (with differential scanning calorimetry) and polymerization stress (with a controlled compliance device) were evaluated. Bis-GMA/TEGDMA (equal mass ratios) were mixed with a tertiary amine (EDMAB) and camphorqpinone, respectively, in three concentrations (wt%): high= 0.8/1.6; intermediate= 0.4/0.8 and low= 0.2/0.4. 80 wt% filler was added. Composites were photoactivated (400 mW/cm(2) x 40 seconds; radiant exposure=16J/cm(2)). A fourth experimental group was included in which the low concentration formulation was exposed for 80 seconds (32 J/cm(2)). Results: For the same radiant exposure, conversion, RP(max) and stress increased with photoinitiator concentration (P< 0.001). When the low concentration group exposed to 32 J/cm(2) was compared with the high and intermediate groups (exposed to 16 J/cm(2)), RPmax Still increased with the photoinitiator concentration between all levels (P< 0.001) but conversion and stress did not vary (P> 0.05). Shrinkage did not vary regardless of the photoinitiator concentration or radiant exposure. For the photoinitiator concentrations used in this study. Polymerization stress was influenced by conversion but not by rate of reaction. (Am J Dent 2009;22:206-210).