46 resultados para sigmatropic rearrangements
Resumo:
The genus Macrobrachium Bate, 1868 is one of the best examples of widespread crustacean genera distributed globally throughout tropical and subtropical waters. Previous investigators have noted the systematic complexity of the group, and have suggested rearrangements within the family Palaemonidae. Our phylogenetic analysis of new mitochondrial DNA sequences of 58 species of Macrobrachium distributed mainly in America support the hypothesis of monophyly of this genus, if Cryphiops Dana, 1852 is accepted as a generic synonym. We concluded that the independent evolution of different types of life cycle (abbreviated larval development-ALD and extended larval development-ELD) must have occurred more than once in the history of the group. Similarly, we also concluded that the current type species of the genus, Macrobrachium americanum Bate, 1868, should not be considered valid, as previously proposed. The synonymy of two members of the `olfersi` species complex (M. birai Lobao, Melo&Fernandes, 1986 and M. holthuisi Genofre&Lobao, 1978) with M. olfersi (Wiegmann, 1836) was confirmed. Similar results were found in comparing M. petronioi Melo, Lobao&Fernandes, 1986 and M. potiuna (Muller, 1880), in which the genetic divergence placed M. petronioi within the level of intraspecific variation of M. potiuna. The taxonomic status of the genus Cryphiops, as well as theories on the origin of Macrobrachium, is also called into question.
Resumo:
Deletion of the long arm of chromosome 18 is one of the most common segmental aneusomies compatible with life and usually involves a deletion of the terminal chromosomal region. However, the mechanisms implicated in the stabilization of terminal deletions are not well understood. In this study, we analyzed a girl with moderate mental retardation who had a cytogenetically visible terminal 18q deletion. In order to characterize the breakpoint in the terminal 18q region, we used fluorescence In situ hybridization (FISH) with bacterial artificial chromosomes (BACs) and pan-telomeric probes and also the array technique based on comparative genomic hybridization (array-CGH). FISH with pan-telomeric probes revealed no signal in the terminal region of the deleted chromosome, indicating the absence of normal telomere repeat (TTAGGG)n sequences in 18q. We suggest that neo-telomere formation by chromosome healing was involved in the repair and stabilization of this terminal deletion. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Conventional karyotyping detects anomalies in 3-15% of patients with multiple congenital anomalies and mental retardation (MCA/MR). Whole-genome array screening (WGAS) has been consistently suggested as the first choice diagnostic test for this group of patients, but it is very costly for large-scale use in developing countries. We evaluated the use of a combination of Multiplex Ligation-dependent Probe Amplification (MLPA) kits to increase the detection rate of chromosomal abnormalities in MCA/MR patients. We screened 261 MCA/MR patients with two subtelomeric and one microdeletion kits. This would theoretically detect up to 70% of all submicroscopic abnormalities. Additionally we scored the de Vries score for 209 patients in an effort to find a suitable cut-off for MLPA screening. Our results reveal that chromosomal abnormalities were present in 87 (33.3%) patients, but only 57 (21.8%) were considered causative. Karyotyping detected 15 abnormalities (6.9%), while MLPA identified 54 (20.7%). Our combined MLPA screening raised the total detection number of pathogenic imbalances more than three times when compared to conventional karyotyping. We also show that using the de Vries score as a cutoff for this screening would only be suitable under financial restrictions. A decision analytic model was constructed with three possible strategies: karyotype, karyotype + MLPA and karyotype + WGAS. Karyotype + MLPA strategy detected anomalies in 19.8% of cases which account for 76.45% of the expected yield for karyotype + WGAS. Incremental Cost Effectiveness Ratio (ICER) of MLPA is three times lower than that of WGAS, which means that, for the same costs, we have three additional diagnoses with MLPA but only one with WGAS. We list all causative alterations found, including rare findings, such as reciprocal duplications of regions deleted in Sotos and Williams-Beuren syndromes. We also describe imbalances that were considered polymorphisms or rare variants, such as the new SNP that confounded the analysis of the 22q13.3 deletion syndrome. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Rearrangements of 1p36 are the most frequently detected abnormalities in diagnostic testing for chromosomal cryptic imbalances and include variably sized simple terminal deletions, derivative chromosomes, interstitial deletions, and complex rearrangements. These rearrangements result in the specific pattern of malformation and neurodevelopmental disabilities that characterizes monosomy 1p36 syndrome. Thus far, no individual gene within this region has been conclusively determined to be causative of any component of the phenotype. Nor is it known if the rearrangements convey phenotypes via a haploinsufficiency mechanism or through a position effect. We have used multiplex ligation-dependent probe amplification to screen for deletions of 1p36 in a group of 154 hyperphagic and overweight/obese, PWS negative individuals, and in a separate group of 83 patients initially sent to investigate a variety of other conditions. The strategy allowed the identification and delineation of rearrangements in nine subjects with a wide spectrum of clinical presentations. Our work reinforces the association of monosomy 1p36 and obesity and hyperphagia, and further suggests that these features may be associated with non-classical manifestations of this disorder in addition to a submicroscopic deletion of similar to 2-3 Mb in size. Multiplex ligation probe amplification using the monosomy 1p36 syndrome-specific kit coupled to the subtelomeric kit is an effective approach to identify and delineate rearrangements at 1p36. (C) 2009 Wiley-Liss, Inc.
Resumo:
We present the first comprehensive study, to our knowledge, on genomic chromosomal analysis in syndromic craniosynostosis. In total, 45 patients with craniosynostotic disorders were screened with a variety of methods including conventional karyotype, microsatellite segregation analysis, subtelomeric multiplex ligation-dependent probe amplification) and whole-genome array-based comparative genome hybridisation. Causative abnormalities were present in 42.2% (19/45) of the samples, and 27.8% (10/36) of the patients with normal conventional karyotype carried submicroscopic imbalances. Our results include a wide variety of imbalances and point to novel chromosomal regions associated with craniosynostosis. The high incidence of pure duplications or trisomies suggests that these are important mechanisms in craniosynostosis, particularly in cases involving the metopic suture.
Resumo:
Although biological similarities have been described among monoclonal B-cell lymphocytosis (MBL) and chronic lymphocytic leukaemia (CLL), the relationships between these two conditions are not fully understood, and new epidemiological studies in different populations and different countries continue to be reported. Here, we investigated 167 first-degree relatives from 42 families of patients with non-familial (sporadic) CLL, using four-colour flow cytometry. MBL was found in seven of 167 subjects (4.1%). Monoclonality was detected in all cases either by light-chain restriction or by polymerase chain reaction. Fluourescence in situ hybridization did not show any chromosomal abnormality. The prevalence of MBL according to age was 0 (0/54) in individuals aged less than 40 years, 2.5% (2/81) between 40 and 60 years, and 15.6% (5/32) in individuals over 60 years. The prevalence of MBL cases in individuals over 60 years was similar to that found in familial CLL relatives at the same age group. This suggests that in older first-degree relatives of patients with sporadic CLL, the risk of MBL detection is as high as in older first-degree relatives from CLL families, which could render these individuals belonging to `sporadic CLL families` as susceptible as individuals from `familial CLL` to the development of clinical CLL.
Resumo:
Although patterns of somatic alterations have been reported for tumor genomes, little is known on how they compare with alterations present in non-tumor genomes. A comparison of the two would be crucial to better characterize the genetic alterations driving tumorigenesis. We sequenced the genomes of a lymphoblastoid (HCC1954BL) and a breast tumor (HCC1954) cell line derived from the same patient and compared the somatic alterations present in both. The lymphoblastoid genome presents a comparable number and similar spectrum of nucleotide substitutions to that found in the tumor genome. However, a significant difference in the ratio of non-synonymous to synonymous substitutions was observed between both genomes (P = 0.031). Protein-protein interaction analysis revealed that mutations in the tumor genome preferentially affect hub-genes (P = 0.0017) and are co-selected to present synergistic functions (P < 0.0001). KEGG analysis showed that in the tumor genome most mutated genes were organized into signaling pathways related to tumorigenesis. No such organization or synergy was observed in the lymphoblastoid genome. Our results indicate that endogenous mutagens and replication errors can generate the overall number of mutations required to drive tumorigenesis and that it is the combination rather than the frequency of mutations that is crucial to complete tumorigenic transformation.
Resumo:
Illegitimate V(D)J-recombination in lymphoid malignancies involves rearrangements in immunoglobulin or T-cell receptor genes, and these rearrangements may play a role in oncogenic events. High frequencies of TRGV-BJ hybrid gene (rearrangement between the TRB and TRG loci at 7q35 and 7p14-15, respectively) have been detected in lymphocytes from patients with ataxia telangiectasia (AT), and also in patients with lymphoid malignancies. Although the TRGV-BJ gene has been described only in T-lymphocytes, we previously detected the presence of TRGV-BJ hybrid gene in the genomic DNA extracted from SV40-transformed AT5BIVA fibroblasts from an AT patient. Aiming to determine whether the AT phenotype or the SV40 transformation could be responsible for the production of the hybrid gene by illegitimate V(D)J-recombination, DNA samples were extracted from primary and SV40-transformed (normal and AT) cell lines, following Nested-PCR with TRGV- and TRBJ-specific primers. The hybrid gene was only detected in SV40-transformed fibroblasts (AT-5BIVA and MRC-5). Sequence alignment of the cloned PCR products using the BLAST program confirmed that the fragments corresponded to the TRGV-BJ hybrid gene. The present results indicate that the rearrangement can be produced in nonlymphoid cells, probably as a consequence of the genomic instability caused by the SV40-transformation, and independently of ATM gene mutation.
Resumo:
Chronic myeloid leukemia (CML) is a rare disease in childhood which is almost exclusively associated with bcr-abl p210 (M-bcr) rearrangements. It has been suggested that co-expression of p 190 and p210 may be a pathway of CML progression in adult patients. We report two cases of pediatric patients with a diagnosis of CML who presented co-expression of the p210 and p190 transcripts during progression to the blastic phase. The present data suggest that p190 may be a secondary event in at least some cases of childhood CML, suggesting an association with progression to a blastic crisis in these patients. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Synovial sarcomas are high-grade malignant mesenchymal tumors that account for 10% of all soft-tissue sarcomas. Almost 95% of these tumors are characterized by a nonrandom chromosomal abnormality, t(X;18)(p11.2;q11.2), that is observed in both biphasic and monophasic variants. In this article, we present the case of a 57-year-old woman diagnosed with high-grade biphasic synovial sarcoma in which conventional cytogenetic analysis revealed the constant presence of a unique t(18;22)(q12;q13), in addition to trisomy 8. The rearrangement was confirmed by fluorescence in situ hybridization. The use of the whole chromosome painting probes WCPX did not detect any rearrangements involving chromosome X, although reverse-transcriptase polymerase chain reaction (PCR) analysis demonstrated the conspicuous presence of a SYT/SXX1 fusion gene. Spectral karyotyping (SKY) was also performed and revealed an insertion of material from chromosome 18 into one of the X chromosomes at position Xp11.2. Thus, the karyotype was subsequently interpreted as 47,X,der(X)ins(X;18) (p11.2;q11.2q11.2),der(18)del(18)(q11.2q11.2)t(18;22)(q12;q13),der(22)t(18;22). Real-time PCR analysis of BCL2 expression in the tumor sample showed a 433-fold increase. This rare finding exemplifies that thorough molecular-cytogenetic analyses are required to elucidate complex and/or cryptic tumor-specific translocations. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Auriculo-condylar syndrome (ACS), an autosomal dominant disorder of first and second pharyngeal arches, is characterized by malformed ears (`question mark ears`), prominent cheeks, microstomia, abnormal temporomandibular joint, and mandibular condyle hypoplasia. Penetrance seems to be complete, but there is high inter-and intra-familial phenotypic variation, with no evidence of genetic heterogeneity. We herein describe a new multigeneration family with 11 affected individuals (F1), in whom we confirm intra-familial clinical variability. Facial asymmetry, a clinical feature not highlighted in other ACS reports, was highly prevalent among the patients reported here. The gene responsible for ACS is still unknown and its identification will certainly contribute to the understanding of human craniofacial development. No chromosomal rearrangements have been associated with ACS, thus mapping and positional cloning is the best approach to identify this disease gene. To map the ACS gene, we conducted linkage analysis in two large ACS families, F1 and F2 (F2; reported elsewhere). Through segregation analysis, we first excluded three known loci associated with disorders of first and second pharyngeal arches (Treacher Collins syndrome, oculo-auriculo-vertebral spectrum, and Townes-Brocks syndrome). Next, we performed a wide genome search and we observed evidence of linkage to 1p21.1-q23.3 in F2 (LOD max 3.01 at theta = 0). Interestingly, this locus was not linked to the phenotype segregating in F1. Therefore, our results led to the mapping of a first locus of ACS (ACS1) and also showed evidence for genetic heterogeneity, suggesting that there are at least two loci responsible for this phenotype.
Resumo:
Chromosome microdeletions or duplications are detected in 10-20% of patients with mental impairment and normal karyotypes. A few cases have been reported of mental impairment with microdeletions comprising tumor suppressor genes. By array-CGH we detected 4 mentally impaired individuals carrying de novo microdeletions sharing an overlapping segment of similar to 180 kb in 17p13.1. This segment encompasses 18 genes, including 3 involved in cancer, namely KCTD11/REN, DLG4/PSD95, and GPS2. Furthermore, in 2 of the patients, the deletions also included TP53, the most frequently inactivated gene in human cancers. The 3 tumor suppressor genes KCTD11, DLG4, and GPS2, in addition to the GABARAP gene, have a known or suspected function in neuronal development and are candidates for causing mental impairment in our patients. Among our 4 patients with deletions in 17p13.1, 3 were part of a Brazilian cohort of 300 mentally retarded individuals, suggesting that this segment may be particularly prone to rearrangements and appears to be an important cause (similar to 1%) of mental retardation. Further, the constitutive deletion of tumor suppressor genes in these patients, particularly TP53, probably confers a significantly increased lifetime risk for cancer and warrants careful oncological surveillance of these patients. Constitutional chromosome deletions containing tumor suppressor genes in patients with mental impairment or congenital abnormalities may represent an important mechanism linking abnormal phenotypes with increased risks of cancer. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
The genus Eigenmannia comprises several species groups that display a surprising variety of diploid chromosome numbers and sex-determining systems. In this study, hypotheses regarding phylogenetic relationships and karyotype evolution were investigated using a combination of molecular and cytogenetic methods. Phylogenetic relationships were analyzed for 11 cytotypes based on sequences from five mitochondrial DNA regions. Parsimony-based character mapping of sex chromosomes confirms previous suggestions of multiple origins of sex chromosomes. Molecular cytogenetic analyses involved chromosome painting using probes derived from whole sex chromosomes from two taxa that were hybridized to metaphases of their respective sister cytotypes. These analyses showed that a multiple XY system evolved recently (<7 mya) by fusion. Furthermore, one of the chromosomes that fused to form the neo-Y chromosome is fused independently to another chromosome in the sister cytotype. This may constitute an efficient post-mating barrier and might imply a direct function of sex chromosomes in the speciation processes in Eigenmannia. The other chromosomal sex-determination system investigated is shown to have differentiated by an accumulation of heterochromatin on the X chromosome. This has occurred in the past 0.6 my, and is the most recent chromosomal sex-determining system described to date. These results show that the evolution of sex-determining systems can proceed very rapidly. Heredity (2011) 106, 391-400; doi:10.1038/hdy.2010.82; published online 23 June 2010
Resumo:
Chromosomal microarray (CMA) is increasingly utilized for genetic testing of individuals with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), or multiple congenital anomalies (MCA). Performing CMA and G-banded karyotyping on every patient substantially increases the total cost of genetic testing. The International Standard Cytogenomic Array (ISCA) Consortium held two international workshops and conducted a literature review of 33 studies, including 21,698 patients tested by CMA. We provide an evidence-based summary of clinical cytogenetic testing comparing CMA to G-banded karyotyping with respect to technical advantages and limitations, diagnostic yield for various types of chromosomal aberrations, and issues that affect test interpretation. CMA offers a much higher diagnostic yield (15%-20%) for genetic testing of individuals with unexplained DD/ID, ASD, or MCA than a G-banded karyotype (similar to 3%, excluding Down syndrome and other recognizable chromosomal syndromes), primarily because of its higher sensitivity for submicroscopic deletions and duplications. Truly balanced rearrangements and low-level mosaicism are generally not detectable by arrays, but these are relatively infrequent causes of abnormal phenotypes in this population (<1%). Available evidence strongly supports the use of CMA in place of G-banded karyotyping as the first-tier cytogenetic diagnostic test for patients with DD/ID, ASD, or MCA. G-banded karyotype analysis should be reserved for patients with obvious chromosomal syndromes (e.g., Down syndrome), a family history of chromosomal rearrangement, or a history of multiple miscarriages.
Resumo:
Gymnotus cf. carapo and Gynznotus sylvius are two fish species inhabiting the Upper Parana River Basin, presenting respectively 2n =54 and 2n = 40 chromosomes. In the present cytogenetic analysis, R-banding and telomere-sequence hybridization were carried out in order to determine the possible relationship between the karyotipes of these two species. Incorporation bands (R-bands) obtained for the two species allowed the identification of chromosome similarities, showing to be an usefull alternative to the G-banding methods, which fail in producing satisfying results in most of analyzed fish species. This approach, associated with the hybridization of telomeric sequences, permited to identify chromosomal rearrangements that could be used as indicators of karyotypic evolution within the group. In the present case, telomeric sequences were detected in the centromeric region of two metacentric chromosome pairs of Gymnotus sylvius. The results obtained after hybridization with the telomere sequences, coupled with the chromosome homeologies detected by R-banding, showed that G. cf carapo and G. sylvius should present a common ancestor, and this may also be corroborated by the similarities found in three chromosome pairs, that seem to have been conserved during the evolution of the two species. Based on the data here presented we propose that G. sylvius may have undergone a recent process of chromosome fusion that resulted in the diminution of its chromosome number.