29 resultados para seed set
Resumo:
According to most studies on seed dispersal in tropical forests, mammals and birds are considered the main dispersal agents and the role played by other animal groups remains poorly explored. We investigate qualitative and quantitative components of the role played by the tortoise Chelonoidis denticulata in seed dispersal in southeastern Amazon, and the influence of seasonal variation in tortoise movement patterns on resulting seed shadows. Seed shadows produced by this tortoise were estimated by combining information on seed passage times through their digestive tract, which varied from 3 to 17 days, with a robust dataset on movements obtained from 18 adult C. denticulata monitored with radio transmitters and spoon-and-line tracking devices. A total of 4,206 seeds were found in 94 collected feces, belonging to 50 seed morphotypes of, at least, 25 plant genera. Very low rates of damage to the external structure of the ingested seeds were observed. Additionally, results of germination trials suggested that passage of seeds through C. denticulata`s digestive tract does not seem to negatively affect seed germination. The estimated seed shadows are likely to contribute significantly to the dispersal of seeds away from parent plants. During the dry season seeds were dispersed, on average, 174.1 m away from the location of fruit ingestion; during the rainy season, this mean dispersal distance increased to 276.7 m. Our results suggest that C. denticulata plays an important role in seed dispersal in Amazonian forests and highlight the influence of seasonal changes in movements on the resulting seed shadows.
Resumo:
Mutualistic interactions involving pollination and ant-plant mutualistic networks typically feature tightly linked species grouped in modules. However, such modularity is infrequent in seed dispersal networks, presumably because research on those networks predominantly includes a single taxonomic animal group (e.g. birds). Herein, for the first time, we examine the pattern of interaction in a network that includes multiple taxonomic groups of seed dispersers, and the mechanisms underlying modularity. We found that the network was nested and modular, with five distinguishable modules. Our examination of the mechanisms underlying such modularity showed that plant and animal trait values were associated with specific modules but phylogenetic effect was limited. Thus, the pattern of interaction in this network is only partially explained by shared evolutionary history. We conclude that the observed modularity emerged by a combination of phylogenetic history and trait convergence of phylogenetically unrelated species, shaped by interactions with particular types of dispersal agents.
Resumo:
Motivation: DNA assembly programs classically perform an all-against-all comparison of reads to identify overlaps, followed by a multiple sequence alignment and generation of a consensus sequence. If the aim is to assemble a particular segment, instead of a whole genome or transcriptome, a target-specific assembly is a more sensible approach. GenSeed is a Perl program that implements a seed-driven recursive assembly consisting of cycles comprising a similarity search, read selection and assembly. The iterative process results in a progressive extension of the original seed sequence. GenSeed was tested and validated on many applications, including the reconstruction of nuclear genes or segments, full-length transcripts, and extrachromosomal genomes. The robustness of the method was confirmed through the use of a variety of DNA and protein seeds, including short sequences derived from SAGE and proteome projects.
Resumo:
Clustering is a difficult task: there is no single cluster definition and the data can have more than one underlying structure. Pareto-based multi-objective genetic algorithms (e.g., MOCK Multi-Objective Clustering with automatic K-determination and MOCLE-Multi-Objective Clustering Ensemble) were proposed to tackle these problems. However, the output of such algorithms can often contains a high number of partitions, becoming difficult for an expert to manually analyze all of them. In order to deal with this problem, we present two selection strategies, which are based on the corrected Rand, to choose a subset of solutions. To test them, they are applied to the set of solutions produced by MOCK and MOCLE in the context of several datasets. The study was also extended to select a reduced set of partitions from the initial population of MOCLE. These analysis show that both versions of selection strategy proposed are very effective. They can significantly reduce the number of solutions and, at the same time, keep the quality and the diversity of the partitions in the original set of solutions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with semi-global C(k)-solvability of complex vector fields of the form L = partial derivative/partial derivative t + x(r) (a(x) + ib(x))partial derivative/partial derivative x, r >= 1, defined on Omega(epsilon) = (-epsilon, epsilon) x S(1), epsilon > 0, where a and b are C(infinity) real-valued functions in (-epsilon, epsilon). It is shown that the interplay between the order of vanishing of the functions a and b at x = 0 influences the C(k)-solvability at Sigma = {0} x S(1). When r = 1, it is permitted that the functions a and b of L depend on the x and t variables, that is, L = partial derivative/partial derivative t + x(a(x, t) + ib(x, t))partial derivative/partial derivative x, where (x, t) is an element of Omega(epsilon).
Resumo:
We study the Gevrey solvability of a class of complex vector fields, defined on Omega(epsilon) = (-epsilon, epsilon) x S(1), given by L = partial derivative/partial derivative t + (a(x) + ib(x))partial derivative/partial derivative x, b not equivalent to 0, near the characteristic set Sigma = {0} x S(1). We show that the interplay between the order of vanishing of the functions a and b at x = 0 plays a role in the Gevrey solvability. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In this paper we describe and evaluate a geometric mass-preserving redistancing procedure for the level set function on general structured grids. The proposed algorithm is adapted from a recent finite element-based method and preserves the mass by means of a localized mass correction. A salient feature of the scheme is the absence of adjustable parameters. The algorithm is tested in two and three spatial dimensions and compared with the widely used partial differential equation (PDE)-based redistancing method using structured Cartesian grids. Through the use of quantitative error measures of interest in level set methods, we show that the overall performance of the proposed geometric procedure is better than PDE-based reinitialization schemes, since it is more robust with comparable accuracy. We also show that the algorithm is well-suited for the highly stretched curvilinear grids used in CFD simulations. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
A method for linearly constrained optimization which modifies and generalizes recent box-constraint optimization algorithms is introduced. The new algorithm is based on a relaxed form of Spectral Projected Gradient iterations. Intercalated with these projected steps, internal iterations restricted to faces of the polytope are performed, which enhance the efficiency of the algorithm. Convergence proofs are given and numerical experiments are included and commented. Software supporting this paper is available through the Tango Project web page: http://www.ime.usp.br/similar to egbirgin/tango/.
Resumo:
Global optimization seeks a minimum or maximum of a multimodal function over a discrete or continuous domain. In this paper, we propose a hybrid heuristic-based on the CGRASP and GENCAN methods-for finding approximate solutions for continuous global optimization problems subject to box constraints. Experimental results illustrate the relative effectiveness of CGRASP-GENCAN on a set of benchmark multimodal test functions.
Resumo:
A bipartite graph G = (V, W, E) is convex if there exists an ordering of the vertices of W such that, for each v. V, the neighbors of v are consecutive in W. We describe both a sequential and a BSP/CGM algorithm to find a maximum independent set in a convex bipartite graph. The sequential algorithm improves over the running time of the previously known algorithm and the BSP/CGM algorithm is a parallel version of the sequential one. The complexity of the algorithms does not depend on |W|.
Resumo:
We present a variable time step, fully adaptive in space, hybrid method for the accurate simulation of incompressible two-phase flows in the presence of surface tension in two dimensions. The method is based on the hybrid level set/front-tracking approach proposed in [H. D. Ceniceros and A. M. Roma, J. Comput. Phys., 205, 391400, 2005]. Geometric, interfacial quantities are computed from front-tracking via the immersed-boundary setting while the signed distance (level set) function, which is evaluated fast and to machine precision, is used as a fluid indicator. The surface tension force is obtained by employing the mixed Eulerian/Lagrangian representation introduced in [S. Shin, S. I. Abdel-Khalik, V. Daru and D. Juric, J. Comput. Phys., 203, 493-516, 2005] whose success for greatly reducing parasitic currents has been demonstrated. The use of our accurate fluid indicator together with effective Lagrangian marker control enhance this parasitic current reduction by several orders of magnitude. To resolve accurately and efficiently sharp gradients and salient flow features we employ dynamic, adaptive mesh refinements. This spatial adaption is used in concert with a dynamic control of the distribution of the Lagrangian nodes along the fluid interface and a variable time step, linearly implicit time integration scheme. We present numerical examples designed to test the capabilities and performance of the proposed approach as well as three applications: the long-time evolution of a fluid interface undergoing Rayleigh-Taylor instability, an example of bubble ascending dynamics, and a drop impacting on a free interface whose dynamics we compare with both existing numerical and experimental data.
Resumo:
Given manifolds M and N, with M compact, we study the geometrical structure of the space of embeddings of M into N, having less regularity than C(infinity) quotiented by the group of diffeomorphisms of M.
Resumo:
Incubation of T. cruzi epimastigotes with the lectin Cramoll 1,4 in Ca(2+) containing medium led to agglutination and inhibition of cell proliferation. The lectin (50 A mu g/ml) induced plasma membrane permeabilization followed by Ca(2+) influx and mitochondrial Ca(2+) accumulation, a result that resembles the classical effect of digitonin. Cramoll 1,4 stimulated (five-fold) mitochondrial reactive oxygen species (ROS) production, significantly decreased the electrical mitochondrial membrane potential (Delta I(m)) and impaired ADP phosphorylation. The rate of uncoupled respiration in epimastigotes was not affected by Cramoll 1,4 plus Ca(2+) treatment, but oligomycin-induced resting respiration was 65% higher in treated cells than in controls. Experiments using T. cruzi mitochondrial fractions showed that, in contrast to digitonin, the lectin significantly decreased Delta I(m) by a mechanism sensitive to EGTA. In agreement with the results showing plasma membrane permeabilization and impairment of oxidative phosphorylation by the lectin, fluorescence microscopy experiments using propidium iodide revealed that Cramoll 1,4 induced epimastigotes death by necrosis.
Resumo:
Molecular orbital calculations were carried out on a set of 28 non-imidazole H(3) antihistamine compounds using the Hartree-Fock method in order to investigate the possible relationships between electronic structural properties and binding affinity for H3 receptors (pK(i)). It was observed that the frontier effective-for-reaction molecular orbital (FERMO) energies were better correlated with pK(i) values than highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy values. Exploratory data analysis through hierarchical cluster (HCA) and principal component analysis (PCA) showed a separation of the compounds in two sets, one grouping the molecules with high pK(i) values, the other gathering low pK(i) value compounds. This separation was obtained with the use of the following descriptors: FERMO energies (epsilon(FERMO)), charges derived from the electrostatic potential on the nitrogen atom (N(1)), electronic density indexes for FERMO on the N(1) atom (Sigma((FERMO))c(i)(2)). and electrophilicity (omega`). These electronic descriptors were used to construct a quantitative structure-activity relationship (QSAR) model through the partial least-squares (PLS) method with three principal components. This model generated Q(2) = 0.88 and R(2) = 0.927 values obtained from a training set and external validation of 23 and 5 molecules, respectively. After the analysis of the PLS regression equation and the values for the selected electronic descriptors, it is suggested that high values of FERMO energies and of Sigma((FERMO))c(i)(2), together with low values of electrophilicity and pronounced negative charges on N(1) appear as desirable properties for the conception of new molecules which might have high binding affinity. 2010 Elsevier Inc. All rights reserved.