48 resultados para recombinant Escherichia coli
Resumo:
The behavior of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium on kippered beef was evaluated. Individual pieces of the product were separately inoculated on the top and bottom surfaces with each three- to six-strain pathogen cocktail at ca. 6.0 log CFU per piece and stored at 4, 10, 21, or 30 degrees C for up to 28 days in each of two trials. When kippered beef was inoculated with E coli O157:H7, Salmonella Typhimurium, or L. monocytogenes and stored at 4, 10, 2 1, or 30 degrees C for up to 28 days, pathogen numbers decreased ca. 0.4 to 0.9, 1.0 to 1.8, 3.0 to >= 5.25, and >= 5.0 to 5.25 log CFU per piece, respectively. Average D-values for E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes stored at 4 to 30 degrees C for 28 days were ca. 41 to 4.6, 40.8 to 5.3, and 29.5 to 4.3 days, respectively. As expected, the higher the storage temperature, the greater the level and rate of inactivation for all three pathogens. These data establish that kippered beef does not provide an environment conducive to proliferation of these pathogens.
Resumo:
Important features of the enteroinvasive Escherichia coli (EIEC) phenotype and gene expression likely to confer EIEC with a lower ability to cause disease than Shigella flexneri were described here for the first time. To confirm the lower pathogenicity of EIEC, we have analyzed the keratoconjunctivitis developed in guinea-pigs with EIEC or S. flexneri. Shigella flexneri induced a more pronounced proinflammatory response, whereas EIEC induced a mild form of the disease. EIEC showed a significantly less efficient cell-to-cell Caco-2 dissemination when compared with S. flexneri. Plaques formed by EIEC during intercellular spreading were four times smaller than those formed by S. flexneri. At the molecular level, the lower expression of virulence genes by EIEC during infection of Caco-2 cells highlighted the importance of effective gene transcription for bacterial pathogenicity.
Resumo:
This study characterized 76 atypical enteropathogenic Escherichia coli (aEPEC) strains, previously classified by the eae(+) EAF-negative stx(-) genotype, isolated from children with diarrhea in Brazil. Presence of bfpA and bfpA/perA was detected in 2 and 6 strains, respectively. The expression of bundle-forming pilus (BFP), however, was observed by immunofluorescence in 1 bfpA and 3 bfpA/perA strains, classifying them as typical EPEC (tEPEC). The remaining 72 aEPEC strains were characterized by serotyping, intimin typing, adherence patterns to HEp-2 cells, capacity to induce actin aggregation (fluorescent actin staining test), and antimicrobial resistance. Our results show that aEPEC comprise a very heterogeneous group that does not present any prevalence or association regarding the studied characteristics. It also suggest that tEPEC and aEPEC must not be classified only by the reactivity with the EAF probe, and that the search of other markers present in pEAF, as well as the BFP expression, must be considered for this matter. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The partitioning of Green Fluorescent Protein (GFP) in poly(ethylene glycol)/Na-poly(acrylate) aqueous two-phase systems (PEG/NaPA-ATPS) has been investigated. The aqueous two-phase systems are formed by mixing the polymers with a salt and a protein solution. The protein partitioning in the two-phase system was investigated at 25 degrees C. The concentration of the GFP was measured by fluorimetry. It was found that the partitioning of GFP depends on the salt type, pH and concentration of PEG. The data indicates that GFP partitions more strongly to the PEG phase in presence of Na2SO4 relative to NaCl. Furthermore, the GFP partitions more to the PEG phase at higher pH. The partition to the PEG phase is strongly favoured in systems with larger tie-line lengths (i.e. systems with higher polymer concentrations). The molecular weight of PEG is important since the partition coefficient (K) of GFP gradually decreases with increasing PEG size, from K ca. 300-400 for PEG 400 to K equal to 1.19 for PEG 8000. A separation process was developed where GFP was separated from a homogenate in two extraction steps: the GFP is first partitioned to the PEG phase in a PEG 3000/NaPA 8000 system containing 3 wt% Na2SO4, where the K value of GFP was 8. The GFP is then re-extracted to a salt phase formed by mixing the previous top-phase with a Na2SO4 solution. The K-value of GFP in this back-extraction was 0.22. The total recovery based on the start material was 74%. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Enteropathogenic Escherichia coli (EPEC) infections are a leading cause of infantile diarrhea in developing nations. Multilocus sequence typing (MLST) characterizes bacterial strains based on the sequences of internal fragments in housekeeping genes. Little is known about strains of EPEC analyzed by MLST from Brazil. In this study, a diverse collection of 29 EPEC strains isolated from patients with diarrhea, admitted to the University Hospital of Ribeirao Preto, was characterized by MLST. Strain analysis demonstrated 22 different sequence types (STs), of which almost half (48%) were new, indicating a high genotype diversity. The 22 STs were divided by eBURST into 12 clonal complexes. It was not possible to correlate typical and atypical EPEC with other strains in the MLST database. This is the first study that analyzed EPEC strains from South America that are included in the E. coli MLST database. Nine (31%) out of 29 strains are part of the CC10 clonal complex, the major clonal complex in the database, which comprises 174 strains and 86 different STs, suggesting that these strains might be the most important intestinal pathogenic E. coli worldwide. Genetic relationships between typical and atypical EPEC, enterohemorrhagic E. coli, and enteroaggregative E. coli strains were not established by MLST.
Resumo:
Background: Patients with hemorrhagic colitis or hemolytic uremic syndrome due to enterohemorrhagic Escherichia coli (EHEC) develop serum IgM and IgG response to lipopolysaccharide (LPS) and to virulence factors such as intimin. The small numbers of cases of diarrhea associated with EHEC strains in Brazil suggests a pre-existing immunity probably due to previous contact with diarrheagenic E. coli. Our aim was to evaluate the development of the serum antibody repertoire to EHEC virulence factors in Brazilian children and adults. Methods: Serum IgM and IgG antibodies were determined by enzyme-linked immunosorbent assay with LPS O111, LPS O26, and LPS O157 in 101 children between 2 months and 10 years of age and in 100 adult sera, by immunoblotting with protein membrane extracts and purified beta intimin; the ability of adult sera to neutralize Shiga toxin2 was also investigated. Results: Children older than 24 months had IgM concentrations reactive with the 3 LPS equivalent to those seen in the adult group, and significantly higher than the group of younger children (P < 0.05). Anti-O26 and anti-O157 LPS IgG concentrations were equivalent between the 2 groups of children and were significantly different from the adult group (P < 0.05). The anti-O111 LPS IgG levels in older children were intermediate between the younger group, and adults (P < 0.05). Immunoblotting revealed strong protein reactivity, including the conserved and variable regions of beta intimin and more than 50% of the adult samples neutralized Shiga toxin 2. Conclusions: Our results demonstrate an increasing anti-LPS and antiprotein antibody response with age, which could provide protection against EHEC infections.
Resumo:
Atypical enteropathogenic Escherichia coli (aEPEC) has been associated with infantile diarrhea in many countries. The clonal structure of aEPEC is the object of active investigation but few works have dealt with its genetic relationship with other diarrheagenic E. coli (DEC). This study aimed to evaluate the genetic relationship of aEPEC with other DEC pathotypes. The phylogenetic relationships of DEC strains were evaluated by multilocus sequence typing. Genetic diversity was assessed by pulsed-field gel electrophoresis (PFGE). The phylogram showed that aEPEC strains were distributed in four major phylogenetic groups (A, B1, B2 and D). Cluster I ( group B1) contains the majority of the strains and other pathotypes [enteroaggregative, enterotoxigenic and enterohemorrhagic E. coli ( EHEC)]; cluster II ( group A) also contains enteroaggregative and diffusely adherent E. coli; cluster III ( group B2) has atypical and typical EPEC possessing H6 or H34 antigen; and cluster IV ( group D) contains aEPEC O55:H7 strains and EHEC O157:H7 strains. PFGE analysis confirmed that these strains encompass a great genetic diversity. These results indicate that aEPEC clonal groups have a particular genomic background - especially the strains of phylogenetic group B1 that probably made possible the acquisition and expression of virulence factors derived from non-EPEC pathotypes.
Resumo:
High incidences of Gram-negative bacteria are found in neonatal nosocomial infections. Our aim was to investigate placental transmission of immunoglobulin G (IgG) reactive with lipopolysaccharide from Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia colt O111, O6 and O26. The total and lipopolysaccharide-specific IgM and IgG were determined in 11 maternal/umbilical-cord sera aged <= 33 weeks (GI); 21 aged > 33 and < 37 weeks (GII); and 32 term newborns (GIII). The total and lipopolysaccharide-specific IgM concentrations were equivalent in maternal sera. The total IgG concentrations were equivalent in maternal and newborn sera, with the exception of GIII newborns as compared with their mothers (P < 0.0001) and with neonates from GI and GII (P < 0.05). Lipopolysaccharide-specific IgG concentrations were lower in GI neonates than in their mothers (P < 0.01) and lower in GII (P < 0.05). Lower lipopolysaccharide-specific IgG levels were observed among neonates only for O111 in GI (P < 0.05) and for 026 and Pseudomonas in GII, both as compared with GIII (P < 0.05). The anti-lipopolysaccharide IgG transfer ratios were lower in GI (except for 026) and in GII (except for Klebsiella and O111) as compared with GIII (P < 0.05). Our results suggest that the greater susceptibility to infections in preterm infants is influenced (besides the humoral response) by factors intrinsic and extrinsic to the condition of prematurity.
Resumo:
To investigate the role of non-protein sulfhydryl groups (NP-SH) and leukocyte adhesion in the protective effect of lipopolysaccharide (LPS) from Escherichia coli against indomethacin-induced gastropathy. Male Wistar rats were divided into four groups: saline, LPS, saline + indomethacin and LPS + indomethacin, with six rats in each group. Rats were pretreated with LPS (300 mu g/kg, by intravenous) or saline. After 6 h, indomethacin was administered (20 mg/kg, by gavage). Three hours after treatments, rats were killed. Macroscopic gastric damage, gastric NP-SH concentration, myeloperoxidase (MPO) activity and mesenteric leukocyte adhesion (intravital microscopy) were assessed. Statistical analysis was performed using one-way analysis of variance followed by the Newman-Keuls test. Statistical significance was set at P < 0.05. LPS reduced the gastric damage, gastric MPO activity and increased gastric NP-SH concentration in indomethacin-induced gastropathy. LPS alone increased gastric NP-SH when compared to saline. Indomethacin increased leukocyte adhesion when compared to the saline, and LPS reduced indomethacin-induced leukocyte adhesion. In addition, LPS alone did not change leukocyte adhesion, when compared to the saline. LPS protective effect against indomethacin-induced gastropathy is mediated by an increase in the NP-SH and a decrease in leukocyte-endothelial adhesion.
Resumo:
Twenty-five extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli clinical isolates from Rio de Janeiro, Brazil were characterized by isoelectric focusing, PCR and sequencing of bla(ESBL) genes, plasmid-mediated quinolone resistance determinants, phylogenetic groups, replicon typing, pulsed-field electrophoresis, and multilocus sequencing typing. Twenty-three (92%) ESBL-producing E. coli isolates were positive for bla(CTX-M) genes, aac(6`)-lb-cr, and qnrB. Genetic relatedness of ESBL producers clustered seven (28%) CTX-M-15-producing isolates as sequence type (ST) 410, clonal complex (CC) 23, and two (8%) as clone O25-ST131. Our results illustrate the predominance of phylo-group A (52%), ST410 (CC 23) and CTX-M-15 among ESBL-producing E. coli isolates from hospitals in Rio de Janeiro.
Resumo:
In rabbit ligated ileal loops, two atypical enteropathogenic Escherichia coli (aEPEC) strains, 3991-1 and 0421-1, intimately associated with the cell membrane, forming the characteristic EPEC attachment and effacement lesion of the brush border, induced a mucous hypersecretion, whereas typical EPEC (tEPEC) strain E2348/69 did not. Using cultured human mucin-secreting intestinal HT29-MTX cells, we demonstrate that apically aEPEC infection is followed by increased production of secreted MUC2 and MUC5AC mucins and membrane-bound MUC3 and MUC4 mucins. The transcription of the MUC5AC and MUC4 genes was transiently upregulated after aEPEC infection. We provide evidence that the apically adhering aEPEC cells exploit the mucins` increased production since they grew in the presence of membrane-bound mucins, whereas tEPEC did not. The data described herein report a putative new virulence phenomenon in aEPEC.
Resumo:
Escherichia coli strains of serotype O51:H40 were studied with regard to the presence of several virulence properties and their genetic diversity and enteropathogenicity in rabbit ileal loops. This serotype encompasses potential enteropathogenic strains mostly classified as being atypical enteropathogenic E. coli (EPEC) strains, which are genetically closer to enterohemorrhagic E. coli than to typical EPEC strains.
Resumo:
A survey was performed to estimate the frequency of Escherichia coli and Shiga toxin-producing E. coli (STEC) in carcasses obtained from an abattoir in Brazil between February 2006 and June 2007. A total of 216 beef carcasses were sampled at three stages of the slaughter process-preevisceration, postevisceration, and postprocessing-during the rain and dry seasons, respectively. Of the carcasses sampled, 58%, were preevisceration E. coli positive, 38% were postevisceration positive, and 32% postprocessing positive. At the postprocessing stage, the isolation of E. coli was twice as high in the rain season. E. coli was isolated from 85 carcasses of which only 3 (1.4%) were positive for stx-encoding genes. No E. coli O157 serogroup isolates were detected. No antimicrobial resistance was found in nine of the isolates (10% of the total). The most frequent resistances were seen against cephalothin (78%), streptomycin (38%), nalidixic acid (36%), and tetracycline (30%). Multidrug resistance (MDR) to three or more antimicrobial agents was determined in 28 (33%) E. coli isolates. The presence of STEC and MDR strains among the isolates in the beef carcasses emphasizes the importance of proper handling to prevent carcass contamination.
Resumo:
Forty-nine typical and atypical enteropathogenic Escherichia coli (EPEC) strains belonging to different serotypes and isolated from humans, pets (cats and dogs), farm animals (bovines, sheep, and rabbits), and wild animals (monkeys) were investigated for virulence markers and clonal similarity by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The virulence markers analyzed revealed that atypical EPEC strains isolated from animals have the potential to cause diarrhea in humans. A close clonal relationship between human and animal isolates was found by MLST and PFGE. These results indicate that these animals act as atypical EPEC reservoirs and may represent sources of infection for humans. Since humans also act as a reservoir of atypical EPEC strains, the cycle of mutual infection of atypical EPEC between animals and humans, mainly pets and their owners, cannot be ruled out since the transmission dynamics between the reservoirs are not yet clearly understood.
Resumo:
The phylogenetic group distribution of Escherichia coli strains isolated from the Sorocaba and Jaguari Rivers located in the State of Sao Paulo, Brazil, is described. E. coli strains from group D were found in both rivers while one strain from group B2 was isolated from the Sorocaba river. These two groups often include strains that can cause extraintestinal diseases. Most of the strains analyzed were allocated into the phylogenetic groups A and B1, supporting the hypothesis that strains from these phylogenetic groups are more abundant in tropical areas. Though both rivers are located in urbanized and industrialized areas where the main source of water pollution is considered to derive from domestic sewage, our results suggest that the major sources of contamination in the sampling sites of both rivers might have originated from animals and not humans.