49 resultados para Statistical Learning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a statistical model to account for the gel-fluid anomalous phase transitions in charged bilayer- or lamellae-forming ionic lipids. The model Hamiltonian comprises effective attractive interactions to describe neutral-lipid membranes as well as the effect of electrostatic repulsions of the discrete ionic charges on the lipid headgroups. The latter can be counterion dissociated (charged) or counterion associated (neutral), while the lipid acyl chains may be in gel (low-temperature or high-lateral-pressure) or fluid (high-temperature or low-lateral-pressure) states. The system is modeled as a lattice gas with two distinct particle types-each one associated, respectively, with the polar-headgroup and the acyl-chain states-which can be mapped onto an Ashkin-Teller model with the inclusion of cubic terms. The model displays a rich thermodynamic behavior in terms of the chemical potential of counterions (related to added salt concentration) and lateral pressure. In particular, we show the existence of semidissociated thermodynamic phases related to the onset of charge order in the system. This type of order stems from spatially ordered counterion association to the lipid headgroups, in which charged and neutral lipids alternate in a checkerboard-like order. Within the mean-field approximation, we predict that the acyl-chain order-disorder transition is discontinuous, with the first-order line ending at a critical point, as in the neutral case. Moreover, the charge order gives rise to continuous transitions, with the associated second-order lines joining the aforementioned first-order line at critical end points. We explore the thermodynamic behavior of some physical quantities, like the specific heat at constant lateral pressure and the degree of ionization, associated with the fraction of charged lipid headgroups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a simple Maier-Saupe statistical model with the inclusion of disorder degrees of freedom to mimic the phase diagram of a mixture of rodlike and disklike molecules. A quenched distribution of shapes leads to a phase diagram with two uniaxial and a biaxial nematic structure. A thermalized distribution, however, which is more adequate to liquid mixtures, precludes the stability of this biaxial phase. We then use a two-temperature formalism, and assume a separation of relaxation times, to show that a partial degree of annealing is already sufficient to stabilize a biaxial nematic structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and analyze two different Bayesian online algorithms for learning in discrete Hidden Markov Models and compare their performance with the already known Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of generalization we draw learning curves in simplified situations for these algorithms and compare their performances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdos-Renyi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabasi-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree k variation, decreasing its network recovery rate with the increase of k. The signal size was important for the inference method to get better accuracy in the network identification rate, presenting very good results with small expression profiles. However, the adopted inference method was not sensible to recognize distinct structures of interaction among genes, presenting a similar behavior when applied to different network topologies. In summary, the proposed framework, though simple, was adequate for the validation of the inferred networks by identifying some properties of the evaluated method, which can be extended to other inference methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient automatic protein classification is of central importance in genomic annotation. As an independent way to check the reliability of the classification, we propose a statistical approach to test if two sets of protein domain sequences coming from two families of the Pfam database are significantly different. We model protein sequences as realizations of Variable Length Markov Chains (VLMC) and we use the context trees as a signature of each protein family. Our approach is based on a Kolmogorov-Smirnov-type goodness-of-fit test proposed by Balding et at. [Limit theorems for sequences of random trees (2008), DOI: 10.1007/s11749-008-0092-z]. The test statistic is a supremum over the space of trees of a function of the two samples; its computation grows, in principle, exponentially fast with the maximal number of nodes of the potential trees. We show how to transform this problem into a max-flow over a related graph which can be solved using a Ford-Fulkerson algorithm in polynomial time on that number. We apply the test to 10 randomly chosen protein domain families from the seed of Pfam-A database (high quality, manually curated families). The test shows that the distributions of context trees coming from different families are significantly different. We emphasize that this is a novel mathematical approach to validate the automatic clustering of sequences in any context. We also study the performance of the test via simulations on Galton-Watson related processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this Study was to compare the learning process of a highly complex ballet skill following demonstrations of point light and video models 16 participants divided into point light and video groups (ns = 8) performed 160 trials of a pirouette equally distributed in blocks of 20 trials alternating periods of demonstration and practice with a retention test a day later Measures of head and trunk oscillation coordination d1 parity from the model and movement time difference showed similarities between video and point light groups ballet experts evaluations indicated superiority of performance in the video over the point light group Results are discussed in terms of the task requirements of dissociation between head and trunk rotations focusing on the hypothesis of sufficiency and higher relevance of information contained in biological motion models applied to learning of complex motor skills

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. Methods and materials: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely. Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. Results: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Conclusions: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article intends to contribute to the reflection on the Educational Statistics as being source for the researches on History of Education. The main concern was to reveal the way Educational Statistics related to the period from 1871 to 1931 were produced, in central government. Official reports - from the General Statistics Directory - and Statistics yearbooks released by that department were analyzed and, on this analysis, recommendations and definitions to perform the works were sought. By rending problematic to the documental issues on Educational Statistics and their usual interpretations, the intention was to reduce the ignorance about the origin of the school numbers, which are occasionally used in current researches without the convenient critical exam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PIBIC-CNPq-Conselho Nacional de Desenvolvimento Cientifico e Technologico

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adaptive process in motor learning was examined in terms of effects of varying amounts of constant practice performed before random practice. Participants pressed five response keys sequentially, the last one coincident with the lighting of a final visual stimulus provided by a complex coincident timing apparatus. Different visual stimulus speeds were used during the random practice. 33 children (M age=11.6 yr.) were randomly assigned to one of three experimental groups: constant-random, constant-random 33%, and constant-random 66%. The constant-random group practiced constantly until they reached a criterion of performance stabilization three consecutive trials within 50 msec. of error. The other two groups had additional constant practice of 33 and 66%, respectively, of the number of trials needed to achieve the stabilization criterion. All three groups performed 36 trials under random practice; in the adaptation phase, they practiced at a different visual stimulus speed adopted in the stabilization phase. Global performance measures were absolute, constant, and variable errors, and movement pattern was analyzed by relative timing and overall movement time. There was no group difference in relation to global performance measures and overall movement time. However, differences between the groups were observed on movement pattern, since constant-random 66% group changed its relative timing performance in the adaptation phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experiment was conducted to investigate the persistence of the effect of ""bandwidth knowledge of results (KR)"" manipulated during the learning phase of performing a manual force-control task. The experiment consisted of two phases, an acquisition phase with the goal of maintaining 60% maximum force in 30 trials, and a second phase with the objective of maintaining 40% of maximum force in 20 further trials. There were four bandwidths of KR: when performance error exceeded 5, 10, or 15% of the target, and a control group (0% bandwidth). Analysis showed that 5, 10, and 15% bandwidth led to better performance than 0% bandwidth KR at the beginning of the second phase and persisted during the extended trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the results of a mature landfill leachate treated by a homogeneous catalytic ozonation process with ions Fe(2+) and Fe(3+) at acidic pH. Quality assessments were performed using Taguchi`s method (L(8) design). Strong synergism was observed statistically between molecular ozone and ferric ions, pointing to their catalytic effect on (center dot)OH generation. The achievement of better organic matter depollution rates requires an ozone flow of 5 L h(-1) (590 mg h(-1) O(3)) and a ferric ion concentration of 5 mg L(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a statistical study on the variability of the mechanical properties of hardened self-compacting concrete, including the compressive strength, splitting tensile strength and modulus of elasticity. The comparison of the experimental results with those derived from several codes and recommendations allows evaluating if the hardened behaviour of self-compacting concrete can be appropriately predicted by the existing formulations. The variables analyzed include the maximum size aggregate, paste and gravel content. Results from the analyzed self-compacting concretes presented variability measures in the same range than the expected for conventional vibrated concrete, with all the results within a confidence level of 95%. From several formulations for conventional concrete considered in this study, it was observed that a safe estimation of the modulus of elasticity can be obtained from the value of compressive strength; with lower strength self-compacting concretes presenting higher safety margins. However, most codes overestimate the material tensile strength. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Learning Object (OA) is any digital resource that can be reused to support learning with specific functions and objectives. The OA specifications are commonly offered in SCORM model without considering activities in groups. This deficiency was overcome by the solution presented in this paper. This work specified OA for e-learning activities in groups based on SCORM model. This solution allows the creation of dynamic objects which include content and software resources for the collaborative learning processes. That results in a generalization of the OA definition, and in a contribution with e-learning specifications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the e-learning environment goal is to attend the individual needs of students during the learning process. The adaptation of contents, activities and tools into different visualization or in a variety of content types is an important feature of this environment, bringing to the user the sensation that there are suitable workplaces to his profile in the same system. Nevertheless, it is important the investigation of student behaviour aspects, considering the context where the interaction happens, to achieve an efficient personalization process. The paper goal is to present an approach to identify the student learning profile analyzing the context of interaction. Besides this, the learning profile could be analyzed in different dimensions allows the system to deal with the different focus of the learning.