21 resultados para Schrodinger-Robertson indeterminacy relations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proves the multiplicity of positive solutions for the following class of quasilinear problems: {-epsilon(p)Delta(p)u+(lambda A(x) + 1)vertical bar u vertical bar(p-2)u = f(u), R(N) u(x)>0 in R(N), where Delta(p) is the p-Laplacian operator, N > p >= 2, lambda and epsilon are positive parameters, A is a nonnegative continuous function and f is a continuous function with subcritical growth. Here, we use variational methods to get multiplicity of positive solutions involving the Lusternick-Schnirelman category of intA(-1)(0) for all sufficiently large lambda and small epsilon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we establish the existence of standing wave solutions for quasilinear Schrodinger equations involving critical growth. By using a change of variables, the quasilinear equations are reduced to semilinear one. whose associated functionals are well defined in the usual Sobolev space and satisfy the geometric conditions of the mountain pass theorem. Using this fact, we obtain a Cerami sequence converging weakly to a solution v. In the proof that v is nontrivial, the main tool is the concentration-compactness principle due to P.L. Lions together with some classical arguments used by H. Brezis and L. Nirenberg (1983) in [9]. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove the existence of ground state solutions for a stationary Schrodinger-Poisson equation in R(3). The proof is based on the mountain pass theorem and it does not require the Ambrosetti-Rabinowitz condition. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter we deal with a nonlinear Schrodinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Here we show that the chaotic perturbation is more effective in destroying the soliton behavior, when compared with random or nonperiodic perturbation. For a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein condensates and their collective excitations and transport. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exchange energy of an arbitrary collinear-spin many-body system in an external magnetic field is a functional of the spin-resolved charge and current densities, E(x)[n(up arrow), n(down arrow), j(up arrow), j(down arrow)]. Within the framework of density-functional theory (DFT), we show that the dependence of this functional on the four densities can be fully reconstructed from either of two extreme limits: a fully polarized system or a completely unpolarized system. Reconstruction from the limit of an unpolarized system yields a generalization of the Oliver-Perdew spin scaling relations from spin-DFT to current-DFT. Reconstruction from the limit of a fully polarized system is used to derive the high-field form of the local-spin-density approximation to current-DFT and to magnetic-field DFT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the existence and nonlinear stability of periodic travelling-wave solutions for a nonlinear Schrodinger-type system arising in nonlinear optics. We show the existence of smooth curves of periodic solutions depending on the dnoidal-type functions. We prove stability results by perturbations having the same minimal wavelength, and instability behaviour by perturbations of two or more times the minima period. We also establish global well posedness for our system by using Bourgain`s approach.