MULTIPLICITY OF POSITIVE SOLUTIONS FOR A CLASS OF NONLINEAR SCHRODINGER EQUATIONS


Autoria(s): ALVES, Claudianor O.; SOARES, Sergio H. M.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

This paper proves the multiplicity of positive solutions for the following class of quasilinear problems: {-epsilon(p)Delta(p)u+(lambda A(x) + 1)vertical bar u vertical bar(p-2)u = f(u), R(N) u(x)>0 in R(N), where Delta(p) is the p-Laplacian operator, N > p >= 2, lambda and epsilon are positive parameters, A is a nonnegative continuous function and f is a continuous function with subcritical growth. Here, we use variational methods to get multiplicity of positive solutions involving the Lusternick-Schnirelman category of intA(-1)(0) for all sufficiently large lambda and small epsilon.

FAPESP[2007/03399-0]

CNPq[620150/2008-4], [303080/2009-4], [313237/2009-3]

Identificador

ADVANCES IN DIFFERENTIAL EQUATIONS, NEW YORK, v.15, n.11/Dez, p.1083-1102, 2010

1079-9389

http://producao.usp.br/handle/BDPI/28813

http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.ade/1355854435&page=record

Idioma(s)

eng

Publicador

KHAYYAM PUBL CO INC

NEW YORK

Relação

Advances in Differential Equations

Direitos

closedAccess

Copyright KHAYYAM PUBL CO INC

Palavras-Chave #BOUND-STATES #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion