74 resultados para Leishmania mexicana amazonensis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lipid microspheres (LM) are excellent drug delivery or vaccines adjuvant systems and are relatively stable. The aim of this work is to develop and characterize a system that is able to encapsulate and present antigenic membrane proteins from Leishmania amazonensis. Membrane proteins are important for vaccine`s formulation because these proteins come in contact with the host cell first, triggering the cell mediated immune response. This is a useful tool to avoid or inactivate the parasite invasion. The LM are constituted by soybean oil (SO), dipalmitoylphosphatidilcholine (DPPC), cholesterol and solubilized protein extract (SPE). The particles formed presented an average diameter of 200 run, low polydispersion and good stability for a period of 30 days, according to dynamic light scattering assays. Isopycnic density gradient centrifugation of LM-protein showed that proteins and lipids floated in the sucrose gradient (5-50%w/v) suggesting that the LM-protein preparation was homogeneous and that the proteins are interacting with the system. The results show that 85% of SPE proteins were encapsulated in the LM. Studies of cellular viability of murine peritoneal macrophages show that our system does not present cytotoxic effect for the macrophages and still stimulates their NO production (which makes its application as a vaccine adjuvant possible). LM-protein loaded with antigenic membrane proteins from L. amazonensis seems to be a promising vaccine system for immunization against leishmaniasis. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pentamidine is a second-line agent used in the treatment of leishmaniasis and its mode of action and mechanism of resistance is not well understood. It was previously demonstrated that transfection of promastigotes and amastigotes with the ABC transporter PRP1 gene confers resistance to pentamidine. To further clarify this point, we generated Leishmania amazonensis mutants resistant to pentamidine. Our results indicated that this ABC transporter is not associated with pentamidine resistance in lines generated by drug pressure through amplification or overexpression mechanisms of PRP1 gene. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, the effect of phospholipase A2 (PLA2) derived from Crotalus durissus collilineatus was evaluated in vitro and in vivo on experimental cutaneous leishmaniasis. The promastigote and amastigote forms treated with PLA2 presented increased growth rate. In vivo studies showed that PLA2-treated Leishmania (Leishmania) amazonensis promastigotes increased the size of lesions in BALB/c mice, and histopathological analysis showed numerous necrotic regions presenting a higher density of polymorphonuclear, mononuclear, and amastigote cells. Additionally, infected macrophages treated with PLA2 were able to generate prostaglandin E2 (PGE2). Cytokine quantification showed that the supernatant from infected macrophages presented moderate and high amounts of IL-2 and IL-10, respectively. However, in PLA2-treated infected macrophages, suppression of IL-2 levels occurred, but not of IL-10 levels. Observation also revealed that both the supernatant and lysate of L. (L.) amazonensis promastigotes exhibited PLA2 activity, which, in the presence of dexamethasone, showed no reduction in their activities; while glucocorticoid maintained the ability of promastigote forms to infect macrophages, which presented values similar to controls. In conclusion, the results indicate that PLA2 may be a progression factor for cutaneous leishmaniasis, since the PLA2 effect suppressed IL-2 levels and generated PGE2, an inflammatory lipid mediator.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the effects of Lutzomyia longipalpis salivary glands homogenate of wild-caught and laboratory-reared vectors on the lesion evolution and immunomodulation of the infection caused by Leishmania (Leishmania) amazonensis. To compare the effect of both salivary glands homogenate (SGH), C57BL/6 mice were inoculated Subcutaneously into the hind footpads or into the ear dermis with 10(6) promastigotes in the presence or not of SGH from wild-caught and laboratory-colonized sand flies. Comparing SGH groups, the lesion size was lower in mice co-inoculated with wild-caught SGH, as the parasitism and the infiltration of macrophages at the inoculation site. Wild-caught SGH also determined lower production of IL-4 and IL-10 but higher IL-12 levels compared with laboratory-reared SGH. Our findings address a probable bias by using SGH from laboratory-colonized sand flies instead of wild-caught vector SGH in studies concerning saliva effects. A possible mild influence of sand fly saliva in natural infections caused by Leishmania is also speculated, as infection is transmitted by wild and not by laboratory-reared vectors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to compare the saliva effect from wild-caught and lab-reared L. longipalpis on the development of experimental cutaneous leishmaniasis, C57BL/6 mice were inoculated subcutaneously into the hind footpads with promastigotes of L (L.) amazonensis Plus salivary gland lysate from wild-caught (SGL-W) and lab-colonized (SGL-C) vectors. Lesion sizes were significantly larger in the mice infected with both saliva compared to mice infected with parasites alone; moreover, the lesions caused by parasite+SGL-C were significantly larger than the lesions caused by parasite+SGL-W. Histopathological morphometric studies regarding the acute phase of infections showed lower numbers of polymorphonuclear cells, greater numbers of mononuclear cells and parasites in SGL-C infected mice compared to SGL-W infected mice. In the chronic phase of infection, the number of mononuclear cells was lower and the number of parasites was greater in SGL-C infected mice than SGL-W infected mice. In vitro studies showed increased infection index of macrophages infected with parasites plus saliva compared to infection with parasites alone, with no difference between the saliva infection indices. SDS-PAGE gel for SGL-C and SGL-W showed differences in the composition and quantity of protein bands, determined by densitometry. These results call attention to the experimental saliva model, which shows exacerbation of infection caused by sandfly saliva. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Leishmania, arginase is responsible for the production of ornithine, a precursor of polyamines required for proliferation of the parasite. In this work, the activation kinetics of immobilized arginase enzyme from L. (L.) amazonensis were studied by varying the concentration of Mn(2+) applied to the nickel column at 23 degrees C. The intensity of the binding of the enzyme to the Ni(2+) resin was directly proportional to the concentration of Mn(2+). Conformational changes of the enzyme may occur when the enzyme interacts with immobilized Ni(2+), allowing the following to occur: (1) entrance of Mn(2+) and formation of the metal bridge; (2) stabilization and activation of the enzyme at 23 degrees C; and (3) an increase in the affinity of the enzyme to Ni(2+) after the Mn(2+) activation step. The conformational alterations can be summarized as follows: the interaction with the Ni(2+) simulates thermal heating in the artificial activation by opening a channel for Mn(2+) to enter. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In addition to its role as a protein component in Leishmania, serine is also a precursor for the synthesis of both phosphatidylserine, which is a membrane molecule involved in parasite invasion and inactivation of macrophages, and sphingolipids, which are necessary for Leishmania to differentiate into its infective forms. We have characterized serine uptake in both promastigote and amastigote forms of Leishmania (Leishmania) amazonensis. In promastigotes, kinetic data show a single, saturable transport system, with a Km of 0.253 +/- 0.01 mM and a maximum velocity of 0.246 +/- 0.04 nmol/min per 107 cells. Serine transport increased linearly with temperature in the range from 20 degrees C to 45 degrees C, allowing the calculation of an activation energy of 7.09 kJ/mol. Alanine, cysteine, glycine, threonine, valine and ethanolamine competed with the substrate at a ten-fold excess concentration. Serine uptake was dependent on pH, with an optimum activity at pH 7.5. The characterization of the serine transport process in amastigotes revealed a transport system with a similar Km, energy of activation and pH response to that found in promastigotes, suggesting that the same transport system is active in both insect vector and mammalian host Leishmania stages. This could constitute an evolutionary mechanism that guarantees the provision of such an essential molecule during host change events, such as differentiation into amastigotes and macrophage invasion, as well as to ensure that the parasite maintains the infection in the mammalian host. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Leishmania spp. are the causative agents of leishmaniasis, a complex of diseases with a broad spectrum of clinical manifestations. Leishmania (Leishmania) amazonensis is a main etiological agent of diffuse cutaneous leishmaniasis. Leishmania spp., as other trypanosomatids, possess a metabolism based significantly on the consumption of amino acids. However, the transport of amino acids in these organisms remains poorly understood with few exceptions. Glutamate transport is an important biological process in many organisms. In the present work, the transport of glutamate is characterized. This process is performed by a single kinetic system (K-m=0.59 +/- 0.04 mM, V-max=0.123 +/- 0.003 nmol/min per 20 x 10(6) cells) showing an energy of activation of 52.38 +/- 4.7 kJ/mol and was shown to be partially inhibited by analogues, such as glutamine, aspartate, alpha-ketoglutarate and oxaloacetate, methionine, and alanine. The transport activity was sensitive to the extracellular concentration of H+ but not to Na+ or K+. However, unlike other amino acid transporters presently characterized, the treatment with specific ionophores confirmed the participation of a K+, and not H+ membrane gradient in the transport process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Arginase (L-arginine amidinohydrolase, E.C. 3.5.3.1) is a metalloenzyme that catalyses the hydrolysis Of L-arginine to L-ornithine and urea. In Leishmania spp., the biological role of the enzyme may be involved in modulating NO production upon macrophage infection. Previously, we cloned and characterized the arginase gene from Leishmania (Leishmania) amazonensis. In the present work, we successfully expressed the recombinant enzyme in E. coli and performed biochemical and biophysical characterization of both the native and recombinant enzymes. We obtained K-M and V-max. values of 23.9(+/- 0.96) mM and 192.3 mu mol/min mg protein (+/- 14.3), respectively, for the native enzyme. For the recombinant counterpart, K-M was 21.5(+/- 0.90) mM and V-max was 144.9(+/- 8.9) mu mol/min mg. Antibody against the recombinant protein confirmed a glycosomal cellular localization of the enzyme in promastigotes. Data from light scattering and small angle X-ray scattering showed that a trimeric state is the active form of the protein. We determined empirically that a manganese wash at room temperature is the best condition to purify active enzyme. The interaction of the recombinant protein with the immobilized nickel also allowed us to confirm the structural disposition of histidine at positions 3 and 324. The determined structural parameters provide substantial data to facilitate the search for selective inhibitors of parasitic sources of arginase, which could subsequently point to a candidate for leishmaniasis therapy. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The META cluster of Leishmania amazonensis contains both META1 and META2 genes, which are upregulated in metacyclic promastigotes and encode proteins containing the META domain. Previous studies defined META2 as a 48.0-kDa protein, which is conserved in other Leishmania species and in Trypanosoma brucei. In this work, we demonstrate that META2 protein expression is regulated during the Leishmania life cycle but constitutive in T. brucei. META2 protein is present in the cytoplasm and flagellum of L amazonensis promastigotes. Leishmania META2-null replacement mutants are more sensitive to oxidative stress and, upon heat shock, assume rounded morphology with shortened flagella. The increased susceptibility of null parasites to heat shock is reversed by extra-chromosomal expression of the META2 gene. Defective Leishmania promastigotes exhibit decreased ability to survive in macrophages. By contrast, META2 expression is decreased by 80% in RNAi-induced T. brucei bloodstream forms with no measurable effect on survival or resistance to heat shock. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resistance of Leishmania parasites to specific chemotherapy has become a well-documented problem in the Indian subcontinent in recent years but only a few studies have focused on the susceptibility of American Leishmania isolates. Our susceptibility assays to meglumine antimoniate were performed against intracellular amastigotes after standardizing an in vitro model of macrophage infection appropriate for Leishmania (Viannia) braziliensis isolates. For the determination of promastigote susceptibility to amphotericin B, we developed a simplified MTT-test. The sensitivity in vitro to meglumine antimoniate and amphotericin B of 13 isolates obtained from Brazilian patients was determined. L. (V.) braziliensis isolates were more susceptible to meglumine antimoniate than Leishmania (Leishmania) amazonensis. EC(50), EC(90) and activity indexes (calculated over the sensitivity of reference strains), suggested that all isolates tested were susceptible in vitro to meglumine antimoniate, and did not show association with the clinical outcomes. Isolates were also uniformly susceptible in vitro to amphotericin B.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The bioactivity of the flavonoids pinostrobin (1), pinocembrin (2), tectochrysin (3), galangin 3-methyl ether (4), and tiliroside (5) isolated from Lychnophora markgravii aerial parts was investigated in vitro against amastigote stages of Leishmania amazonensis. The compounds were isolated by several chromatographic techniques and their chemical structures were established by ESI-MS and NMR spectroscopic data. The flavonoids 1 and 3 were the most active compounds; they markedly reduced the viability of Leishmania amastigotes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The isoprenoid metabolic pathway in protozoa of the Leishmania genus exhibits distinctive characteristics. These parasites, as well as other members of the Trypanosomatidae family, synthesize ergosterol, instead of cholesterol, as the main membrane sterol lipid. Leishmania has been shown to utilize leucine, instead of acetate as the main precursor for sterol biosynthesis. While mammalian dolichols are molecules containing 15-23 isoprene units, Leishmania amazonensis promastigotes synthesize dolichol of 11 and 12 units. In this paper, we show that the intracellular stages of L. amazonensis, amastigotes, synthesize mainly polyprenols of 9 isoprene units, instead of dolichol. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to investigate the effectiveness of Photodynamic Therapy (PDT) using Methylene Blue (MB) as the photosensitizing compound and a Light-Emitting Diode (LED) in American cutaneous leishmaniasis (ACL). Hamsters were experimentally infected with Leishmania (Leishmania) amazonensis. After the development of the lesions in the footpad, the animals were treated with MB three times a week for 3 months. Ten minutes after each application of MB, the lesions were irradiated with LED for 1 h. The lesions were evaluated weekly by the measurement of the hamster footpad thickness. At the end of the treatment the parasitic load was quantified in the regional lymph node of the hamsters. The treatment promoted a decrease in the thickness of infected footpad (P = 0.0001) and reduction in the parasitic load in the regional lymph node (P = 0.0007) of the animals from group treated with MB + LED. PDT using MB + LED in ACL caused by L. amazonensis shows a strong photodynamic effect. This therapy is very promising, once it is an inexpensive system and the own patient can apply it in their wound and in their house without the need of technical assistance. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73 +/- 12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-gamma secretion, ratios of IFN-gamma/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNF alpha/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-gamma/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent vaccines against NHs-dependent pathogens.