34 resultados para Hipercubo Fuzzy
Resumo:
This paper presents the design and implementation of an embedded soft sensor, i. e., a generic and autonomous hardware module, which can be applied to many complex plants, wherein a certain variable cannot be directly measured. It is implemented based on a fuzzy identification algorithm called ""Limited Rules"", employed to model continuous nonlinear processes. The fuzzy model has a Takagi-Sugeno-Kang structure and the premise parameters are defined based on the Fuzzy C-Means (FCM) clustering algorithm. The firmware contains the soft sensor and it runs online, estimating the target variable from other available variables. Tests have been performed using a simulated pH neutralization plant. The results of the embedded soft sensor have been considered satisfactory. A complete embedded inferential control system is also presented, including a soft sensor and a PID controller. (c) 2007, ISA. Published by Elsevier Ltd. All rights reserved.
Resumo:
Recently, the development of industrial processes brought on the outbreak of technologically complex systems. This development generated the necessity of research relative to the mathematical techniques that have the capacity to deal with project complexities and validation. Fuzzy models have been receiving particular attention in the area of nonlinear systems identification and analysis due to it is capacity to approximate nonlinear behavior and deal with uncertainty. A fuzzy rule-based model suitable for the approximation of many systems and functions is the Takagi-Sugeno (TS) fuzzy model. IS fuzzy models are nonlinear systems described by a set of if then rules which gives local linear representations of an underlying system. Such models can approximate a wide class of nonlinear systems. In this paper a performance analysis of a system based on IS fuzzy inference system for the calibration of electronic compass devices is considered. The contribution of the evaluated IS fuzzy inference system is to reduce the error obtained in data acquisition from a digital electronic compass. For the reliable operation of the TS fuzzy inference system, adequate error measurements must be taken. The error noise must be filtered before the application of the IS fuzzy inference system. The proposed method demonstrated an effectiveness of 57% at reducing the total error based on considered tests. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Nursing diagnoses associated with alterations of urinary elimination require different interventions, Nurses, who are not specialists, require support to diagnose and manage patients with disturbances of urine elimination. The aim of this study was to present a model based on fuzzy logic for differential diagnosis of alterations in urinary elimination, considering nursing diagnosis approved by the North American Nursing Diagnosis Association, 2001-2002. Fuzzy relations and the maximum-minimum composition approach were used to develop the system. The model performance was evaluated with 195 cases from the database of a previous study, resulting in 79.0% of total concordance and 19.5% of partial concordance, when compared with the panel of experts. Total discordance was observed in only three cases (1.5%). The agreement between model and experts was excellent (kappa = 0.98, P < .0001) or substantial (kappa = 0.69, P < .0001) when considering the overestimative accordance (accordance was considered when at least one diagnosis was equal) and the underestimative discordance (discordance was considered when at least one diagnosis was different), respectively. The model herein presented showed good performance and a simple theoretical structure, therefore demanding few computational resources.
Resumo:
Fuzzy Bayesian tests were performed to evaluate whether the mother`s seroprevalence and children`s seroconversion to measles vaccine could be considered as ""high"" or ""low"". The results of the tests were aggregated into a fuzzy rule-based model structure, which would allow an expert to influence the model results. The linguistic model was developed considering four input variables. As the model output, we obtain the recommended age-specific vaccine coverage. The inputs of the fuzzy rules are fuzzy sets and the outputs are constant functions, performing the simplest Takagi-Sugeno-Kang model. This fuzzy approach is compared to a classical one, where the classical Bayes test was performed. Although the fuzzy and classical performances were similar, the fuzzy approach was more detailed and revealed important differences. In addition to taking into account subjective information in the form of fuzzy hypotheses it can be intuitively grasped by the decision maker. Finally, we show that the Bayesian test of fuzzy hypotheses is an interesting approach from the theoretical point of view, in the sense that it combines two complementary areas of investigation, normally seen as competitive. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present a fuzzy approach to the Reed-Frost model for epidemic spreading taking into account uncertainties in the diagnostic of the infection. The heterogeneities in the infected group is based on the clinical signals of the individuals (symptoms, laboratorial exams, medical findings, etc.), which are incorporated into the dynamic of the epidemic. The infectivity level is time-varying and the classification of the individuals is performed through fuzzy relations. Simulations considering a real problem with data of the viral epidemic in a children daycare are performed and the results are compared with a stochastic Reed-Frost generalization.
Resumo:
This paper is concerned with the computational efficiency of fuzzy clustering algorithms when the data set to be clustered is described by a proximity matrix only (relational data) and the number of clusters must be automatically estimated from such data. A fuzzy variant of an evolutionary algorithm for relational clustering is derived and compared against two systematic (pseudo-exhaustive) approaches that can also be used to automatically estimate the number of fuzzy clusters in relational data. An extensive collection of experiments involving 18 artificial and two real data sets is reported and analyzed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper tackles the problem of showing that evolutionary algorithms for fuzzy clustering can be more efficient than systematic (i.e. repetitive) approaches when the number of clusters in a data set is unknown. To do so, a fuzzy version of an Evolutionary Algorithm for Clustering (EAC) is introduced. A fuzzy cluster validity criterion and a fuzzy local search algorithm are used instead of their hard counterparts employed by EAC. Theoretical complexity analyses for both the systematic and evolutionary algorithms under interest are provided. Examples with computational experiments and statistical analyses are also presented.
Resumo:
Os sistemas biológicos são surpreendentemente flexíveis pra processar informação proveniente do mundo real. Alguns organismos biológicos possuem uma unidade central de processamento denominada de cérebro. O cérebro humano consiste de 10(11) neurônios e realiza processamento inteligente de forma exata e subjetiva. A Inteligência Artificial (IA) tenta trazer para o mundo da computação digital a heurística dos sistemas biológicos de várias maneiras, mas, ainda resta muito para que isso seja concretizado. No entanto, algumas técnicas como Redes neurais artificiais e lógica fuzzy tem mostrado efetivas para resolver problemas complexos usando a heurística dos sistemas biológicos. Recentemente o numero de aplicação dos métodos da IA em sistemas zootécnicos tem aumentado significativamente. O objetivo deste artigo é explicar os princípios básicos da resolução de problemas usando heurística e demonstrar como a IA pode ser aplicada para construir um sistema especialista para resolver problemas na área de zootecnia.
Resumo:
Genetic models of sex and caste determination in eusocial stingless bees suggest specific patterns of male, worker and gyne cell distribution in the brood comb. Conflict between queen and laying workers over male parentage and center-periphery gradients of conditions, such as food and temperature, could also contribute to non-random spatial configuration. We converted the positions of the hexagonal cells in a brood comb to Cartesian coordinates, labeled by sex or caste of the individuals inside. To detect and locate clustered patterns, the mapped brood combs were evaluated by indexes of dispersion (MMC, mean distance of cells of a given category from their centroid) and eccentricity (DMB, distance between this centroid and the overall brood comb centroid) that we developed. After randomizing the labels and recalculating the indexes, we calculated probabilities that the original values had been generated by chance. We created sets of binary brood combs in which males were aggregated, regularly or randomly distributed among females. These stylized maps were used to describe the power of MMC and DMB, and they were applied to evaluate the male distribution in the sampled Nannotrigona testaceicornis brood combs. MMC was very sensitive to slight deviations from a perfectly rounded clump; DMB detected any asymmetry in the location of these compact to fuzzy clusters. Six of the 82 brood combs of N. testaceicornis that we analyzed had more than nine males, distributed according to variations in spatial patterns, as indicated by the two indexes.
Resumo:
Today several different unsupervised classification algorithms are commonly used to cluster similar patterns in a data set based only on its statistical properties. Specially in image data applications, self-organizing methods for unsupervised classification have been successfully applied for clustering pixels or group of pixels in order to perform segmentation tasks. The first important contribution of this paper refers to the development of a self-organizing method for data classification, named Enhanced Independent Component Analysis Mixture Model (EICAMM), which was built by proposing some modifications in the Independent Component Analysis Mixture Model (ICAMM). Such improvements were proposed by considering some of the model limitations as well as by analyzing how it should be improved in order to become more efficient. Moreover, a pre-processing methodology was also proposed, which is based on combining the Sparse Code Shrinkage (SCS) for image denoising and the Sobel edge detector. In the experiments of this work, the EICAMM and other self-organizing models were applied for segmenting images in their original and pre-processed versions. A comparative analysis showed satisfactory and competitive image segmentation results obtained by the proposals presented herein. (C) 2008 Published by Elsevier B.V.
Resumo:
Recent advances in energy technology generation and new directions in electricity regulation have made distributed generation (DG) more widespread, with consequent significant impacts on the operational characteristics of distribution networks. For this reason, new methods for identifying such impacts are needed, together with research and development of new tools and resources to maintain and facilitate continued expansion towards DG. This paper presents a study aimed at determining appropriate DG sites for distribution systems. The main considerations which determine DG sites are also presented, together with an account of the advantages gained from correct DG placement. The paper intends to define some quantitative and qualitative parameters evaluated by Digsilent (R), GARP3 (R) and DSA-GD software. A multi-objective approach based on the Bellman-Zadeh algorithm and fuzzy logic is used to determine appropriate DG sites. The study also aims to find acceptable DG locations both for distribution system feeders, as well as for nodes inside a given feeder. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper aims to formulate and investigate the application of various nonlinear H(infinity) control methods to a fiee-floating space manipulator subject to parametric uncertainties and external disturbances. From a tutorial perspective, a model-based approach and adaptive procedures based on linear parametrization, neural networks and fuzzy systems are covered by this work. A comparative study is conducted based on experimental implementations performed with an actual underactuated fixed-base planar manipulator which is, following the DEM concept, dynamically equivalent to a free-floating space manipulator. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Many authors point out that the front-end of new product development (NPD) is a critical success factor in the NPD process and that numerous companies face difficulties in carrying it out appropriately. Therefore, it is important to develop new theories and proposals that support the effective implementation of this earliest phase of NPD. This paper presents a new method to support the development of front-end activities based on integrating technology roadmapping (TRM) and project portfolio management (PPM). This new method, called the ITP Method, was implemented at a small Brazilian high-tech company in the nanotechnology industry to explore the integration proposal. The case study demonstrated that the ITP Method provides a systematic procedure for the fuzzy front-end and integrates innovation perspectives into a single roadmap, which allows for a better alignment of business efforts and communication of product innovation goals. Furthermore, the results indicated that the method may also improve quality, functional integration and strategy alignment. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The present paper proposes a flexible consensus scheme for group decision making, which allows one to obtain a consistent collective opinion, from information provided by each expert in terms of multigranular fuzzy estimates. It is based on a linguistic hierarchical model with multigranular sets of linguistic terms, and the choice of the most suitable set is a prerogative of each expert. From the human viewpoint, using such model is advantageous, since it permits each expert to utilize linguistic terms that reflect more adequately the level of uncertainty intrinsic to his evaluation. From the operational viewpoint, the advantage of using such model lies in the fact that it allows one to express the linguistic information in a unique domain, without losses of information, during the discussion process. The proposed consensus scheme supposes that the moderator can interfere in the discussion process in different ways. The intervention can be a request to any expert to update his opinion or can be the adjustment of the weight of each expert`s opinion. An optimal adjustment can be achieved through the execution of an optimization procedure that searches for the weights that maximize a corresponding soft consensus index. In order to demonstrate the usefulness of the presented consensus scheme, a technique for multicriteria analysis, based on fuzzy preference relation modeling, is utilized for solving a hypothetical enterprise strategy planning problem, generated with the use of the Balanced Scorecard methodology. (C) 2009 Elsevier Inc. All rights reserved.