406 resultados para EXPRESSION CLONING


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, a thermophilic esterase from Thermus thermophilus HB27 was cloned into Kluyveromyces marxianus and into Kluyveromyces lactis using two different expression systems, yielding four recombinant strains. K. lactis showed the highest esterase expression levels (294 units per gram dry cell weight, with 65% of cell-bound enzyme) using an episomal system with the PGK promoter and terminator from Saccharomyces cerevisiae combined with the K. lactis k1 secretion signal. K. marxianus showed higher secretion efficiency of the heterologous esterase (56.9 units per gram dry cell weight, with 34% of cell-bound enzyme) than K. lactis. Hydrolytic activities for the heterologous esterases were maximum at pH values between 8.0 and 9.0 for both yeast species and at temperatures of 50 A degrees C and 45 A degrees C for K. marxianus and K. lactis, respectively. When compared to previously published data on this same esterase produced in the original host or in S. cerevisiae, our results indicate that Kluyveromyces yeasts can be considered good hosts for the heterologous secretion of thermophilic esterases, which have a potential application in biodiesel production or in resolving racemates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crotalus durissus rattlesnakes are responsible for the most lethal cases of snakebites in Brazil. Crotalus durissus collilineatus subspecies is related to a great number of accidents in Southeast and Central West regions, but few studies on its venom composition have been carried out to date. In an attempt to describe the transcriptional profile of the C. durissus collilineatus venom gland, we generated a cDNA library and the sequences obtained could be identified by similarity searches on existing databases. Out of 673 expressed sequence tags (ESTs) 489 produced readable sequences comprising 201 singletons and 47 clusters of two or more ESTs. One hundred and fifty reads (60.5%) produced significant hits to known sequences. The results showed a predominance of toxin-coding ESTs instead of transcripts coding for proteins involved in all cellular functions. The most frequent toxin was crotoxin, comprising 88% of toxin-coding sequences. Crotoxin B, a basic phospholipase A(2) (PLA(2)) subunit of crotoxin, was represented in more variable forms comparing to the non-enzymatic subunit (crotoxin A), and most sequences coding this molecule were identified as CB1 isoform from Crotalus durissus terrificus venom. Four percent of toxin-related sequences in this study were identified as growth factors, comprising five sequences for vascular endothelial growth factor (VEGF) and one for nerve growth factor (NGF) that showed 100% of identity with C. durissus terrificus NGF. We also identified two clusters for metalloprotease from PII class comprising 3% of the toxins, and two for serine proteases, including gyroxin (2.5%). The remaining 2.5% of toxin-coding ESTs represent singletons identified as homologue sequences to cardiotoxin, convulxin, angiotensin-converting enzyme inhibitor and C-type natriuretic peptide, Ohanin, crotamin and PLA(2) inhibitor. These results allowed the identification of the most common classes of toxins in C. durissus collilineatus snake venom, also showing some unknown classes for this subspecies and even for C. durissus species, such as cardiotoxins and VEGF. (C) 2009 Published by Elsevier Masson SAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two members of the low density lipoprotein receptor (LDLR) family were identified as putative orthologs for a vitellogenin receptor (Amvgr) and a lipophorin receptor (Amlpr) in the Apis mellifera genome. Both receptor sequences have the structural motifs characteristic of LDLR family members and show a high degree of similarity with sequences of other insects. RT-PCR analysis of Amvgr and Amlpr expression detected the presence of both transcripts in different tissues of adult female (ovary, fat body, midgut, head and specifically hypopharyngeal gland), as well as in embryos. In the head RNA samples we found two variant forms of AmLpR: a full length one and a shorter one lacking 29 amino acids in the O-linked sugar domain. In ovaries the expression levels of the two honey bee LDLR members showed opposing trends: whereas Amvgr expression was upregulated as the ovaries became activated, Amlpr transcript levels gradually declined. In situ hybridization analysis performed on ovaries detected Amvgr mRNA exclusively in germ line cells and corroborated the qPCR results showing an increase in Amvgr gene expression concomitant with follicle growth. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A xylanase was cloned from Aspergillus niveus and successfully expressed in Aspergillus nidulans (XAN). The full-length gene consisted of 890 bp and encoded 275 mature amino acids with a calculated mass of 31.3 kDa. The deduced amino acid sequence was highly homologous with the xylanase belonging to family 11 of the glycoside hydrolases. The recombinant protein was purified to electrophoretic homogeneity by anion-exchange chromatography and gel filtration. The optima of pH and temperature for the recombinant enzyme were 5.0 and 65 degrees C, respectively. The thermal stability of the recombinant xylanase was extremely improved by covalent immobilization on glyoxyl agarose with 91.4% of residual activity after 180 min at 60 degrees C, on the other hand, the free xylanase showed a half-life of 9.9 min at the same temperature. Affinity chromatography on Concanavalin A- and Jacalin-agarose columns followed by SDS-PAGE analyses showed that the XAN has O- and N-glycans. XAN promotes hydrolysis of xylan resulting in xylobiose, xylotriose and xylotetraose. Intermediate degradation of xylan resulting in xylo-oligomers is appealing for functional foods as the beneficial effect of oligosaccharides on gastrointestinal micro flora includes preventing proliferation of pathogenic intestinal bacteria and facilitates digestion and absorption of nutrients. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulp softening is one of the most remarkable changes during ripening of papaya (Carica papaya) fruit and it is a major cause for post-harvest losses. Although cell wall catabolism has a major influence on papaya fruit, quality information on the gene products involved in this process is limited. A full-length polygalacturonase cDNA (cpPG) was isolated from papaya pulp and used to study gene expression and enzyme activity during normal and ethylene-induced ripening and after exposure of the fruit to 1-MCP. Northern-blot analysis demonstrated that cpPG transcription was strongly induced during ripening and was highly ethylene-dependent. The accumulation of cpPG transcript was paralleled by enzyme activity, and inversely correlated to the pulp firmness. Preliminary in silica analysis of the cpPG genomic sequence revealed the occurrence of putative regulatory motifs in the promoter region that may help to explain the effects of plant hormones and non-abiotic stresses on papaya fruit firmness. This newly isolated cpPG is an important candidate for functional characterization and manipulation to control the process of pulp softening during papaya ripening. (C) 2009 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Farnesoic acid O-methyl transferase (FAMeT) is the enzyme that catalyzes the formation of methyl farnesoate (MF) from farnesoic acid (FA) in the biosynthetic pathway of juvenile hormone (JH). This work reports the cloning, sequencing, and expression of FAMeT gene from the stingless bee Melipona scutellaris (MsFAMeT). The MsFAMeT in silica analysis showed that greatest sequence similarity is found in Apis mellifera and other insects, while relatively less similarity is shown in crustaceans. Evidence of alternative splicing of a 27 nucleotide (nt) microexon explains the presence of the detected isoforms, 1 and 2. The expression analysis of the two isoforms showed a marked difference when castes were compared, suggesting that they could be involved differently in the JH metabolism in M. scutellaris, providing new insights for the comprehension of female plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal cloning by nuclear transfer (NT) has made the production of transgenic animals using genetically modified donor cells possible and ensures the presence of the gene construct in the offspring. The identification of transgene insertion sites in donor cells before cloning may avoid the production of animals that carry undesirable characteristics due to positional effects. This article compares blastocyst development and competence to establish pregnancies of bovine cloned embryos reconstructed with lentivirus-mediated transgenic fibroblasts containing either random integration of a transgene (random integration group) or nuclear transfer derived transgenic fibroblasts with known transgene insertion sites submitted to recloning (recloned group). In the random integration group, eGFP-expressing bovine fetal fibroblasts were selected by fluorescence activated cell sorting (FACS) and used as nuclei donor cells for NT. In the recloned group, a fibroblast cell line derived from a transgenic cloned fetus was characterized regarding transgene insertion and submitted to recloning. The recloned group had higher blastocyst production (25.38 vs. 14.42%) and higher percentage of 30-day pregnancies (14.29 vs. 2.56%) when compared to the random integration group. Relative eGFP expression analysis in fibroblasts derived from each cloned embryo revealed more homogeneous expression in the recloned group. In conclusion, the use of cell lines recovered from transgenic fetuses after identification of the transgene integration site allowed for the production of cells and fetuses with stable transgene expression, and recloning may improve transgenic animal yields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although cloning of mammals has been achieved successfully, the percentage of live offspring is very low because of reduced fetal size and fewer implantation sites. Recent studies have attributed such pathological conditions to abnormal reprogramming of the donor cell used for cloning. The inability of the oocyte to fully restore the differentiated status of a somatic cell to its pluripotent and undifferentiated state is normally evidenced by aberrant DNA methylation patterns established throughout the genome during development to blastocyst. These aberrant methylation patterns are associated with abnormal expression of imprinted genes, which among other genes are essential for normal embryo development and gestation. We hypothesized that embryo loss and low implantation rates in cattle derived by somatic cell nuclear transfer (SCNT) are caused by abnormal epigenetic reprogramming of imprinted genes. To verify our hypothesis, we analyzed the parental expression and the differentially methylated domain (DMD) methylation status of the H19 gene. Using a parental-specific analysis, we confirmed for the first time that H19 biallelic expression is tightly associated with a severe demethylation of the paternal H19 DMD in SCNT embryos, suggesting that these epigenetic anomalies to the H19 locus could be directly responsible for the reduced size and low implantation rates of cloned embryos in cattle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A different organization for the xyl operon was found in different genomes of Burkholderia and Pseudomomas species. Degenerated primers were designed based on Burkholderia genomes and used to amplify the xylose isomerase gene (xylA) from Burkholderia sacchari IPT101 The gene encoded a protein of 329 amino acids, which showed the highest similarity (90%) to the homologous gene of Burkholderia dolosa. It was cloned in the broad host range plasmid pBBR1MCS-2, which partially restored growth and polyhydroxybutyrate production capability in xylose to a B. sacchari xyl(-) mutant. When xylA was overexpressed in the wild-type strain, it was not able to increase growth and polyhydroxybutyrate production, suggesting that XylA activity is not limiting for xylose utilization in B. sacchari.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we described the expression and characterization of the recombinant toxin LTx2, which was previously isolated from the venomous cDNA library of a Brazilian spider, Lasiodora sp. (Mygalomorphae, Theraphosidae). The recombinant toxin found in the soluble and insoluble fractions was purified by reverse phase high-performance liquid chromatography (HPLC). Ca2+ imaging analysis revealed that the recombinant LTx2 acts on calcium channels of BC3H1 cells, blocking L-type calcium channels. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutral trehalase from Neurospora crassa was expressed in Escherichia coli as a polypeptide of similar to 84 kDa in agreement with the theoretical size calculated from the corresponding cDNA. The recombinant neutral trehalase, purified by affinity chromatography exhibited a specific activity of 80-150 mU/mg protein. Optima of pH and temperature were 7.0 and 30 degrees C, respectively. The enzyme was absolutely specific for trehalose, and was quite sensitive to incubation at 40 degrees C. The recombinant enzyme was totally dependent on calcium, and was inhibited by ATP, copper, silver, aluminium and cobalt. K(M) was 42 mM, and V(max) was 30.6 nmol of glucose/min. The recombinant protein was phosphorylated by cAMP-dependent protein kinase, but not significantly activated. Immunoblotting with polyclonal antiserum prepared against the recombinant protein showed that neutral trehalase protein levels increased during exponential phase of N. crassa growth and dropped at the stationary phase. This is the first report of a neutral trehalase produced in E. coli with similar biochemical properties described for fungi native neutral trehalases, including calcium-dependence. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HSP90 proteins are important molecular chaperones involved in multiple cellular processes. This work reports the characterization of cDNAs encoding two distinct HSP90 proteins (named HSP90A and HSP90B) from the chytridiomycete Blastocladiella emersonii. Deduced amino acid sequences of HSP90A and HSP90B exhibit signatures of the cytosolic and endoplasmic reticulum (ER) HSP90 proteins, respectively. A genomic clone encoding HSP90A was also characterized indicating the presence of a single intron of 184 bp interrupting the coding region, located near the amino-terminus of the protein. Expression of both HSP90A and HSP90B genes increases significantly during heat shock at 38 degrees C, with highest induction ratios observed in cells stressed during germination of the fungus. Changes in the amount of HSP90A transcript were also evaluated during B. emersonii life cycle at physiological temperature (27 degrees C), and its levels were found to increase both during germination and sporulation of the fungus. HSP90A protein levels were analyzed during B. emersonii life cycle and significant changes were observed only during sporulation. Furthermore, during heat stress a large increase in the amount of HSP90A protein was observed. Induction of HSP90A and HSP90B genes during heat stress indicates the importance of both genes in the response to high temperature in B. emersonii. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trypanosomes are flagellated protozoa responsible for serious parasitic diseases that have been classified by the World Health Organization as tropical sicknesses of major importance. One important drug target receiving considerable attention is the enzyme glyceraldehyde-3-phosphate dehydrogenase from the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (T. cruzi Glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH); EC 1.2.1.12). TcGAPDH is a key enzyme in the glycolytic pathway of T. cruzi and catalyzes the oxidative phosphorylation of D-glyceraldehyde-3-phosphate (G3P) to 1,3-bisphosphoglycerate (1,3-BPG) coupled to the reduction of oxidized nicotinamide adenine dinucleotide, (NAD(+)) to NADH, the reduced form. Herein, we describe the cloning of the T. cruzi gene for TcGAPDH into the pET-28a(+) vector, its expression as a tagged protein in Escherichia coli, purification and kinetic characterization. The His(6)-tagged TcGAPDH was purified by affinity chromatography. Enzyme activity assays for the recombinant His(6)-TcGAPDH were carried out spectrophotometrically to determine the kinetic parameters. The apparent Michaelis-Menten constant (K(M)(app)) determined for D-glyceraldehyde-3-phosphate and NAD(+) were 352 +/- 21 and 272 +/- 25 mu M, respectively, which were consistent with the values for the untagged enzyme reported in the literature. We have demonstrated by the use of Isothermal Titration Calorimetry (ITC) that this vector modification resulted in activity preserved for a higher period. We also report here the use of response surface methodology (RSM) to determine the region of optimal conditions for enzyme activity. A quadratic model was developed by RSM to describe the enzyme activity in terms of pH and temperature as independent variables. According to the RMS contour plots and variance analysis, the maximum enzyme activity was at 29.1 degrees C and pH 8.6. Above 37 degrees C, the enzyme activity starts to fall, which may be related to previous reports that the quaternary structure begins a process of disassembly. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to determine whether the presence of leprosy reactional episodes could be associated with chronic oral infection. Thirty-eight leprosy patients were selected and divided into 2 groups: group I - 19 leprosy patients with oral infections, and group II - 19 leprosy patients without oral infections. Ten patients without leprosy, but presenting oral infections, were assigned to the control group. Leprosy patients were classified according to Ridley and Jopling classification and reactional episodes of the erythema nodosum type or reversal reaction were identified by clinical and histopathological features associated with serum IL-1, TNF-α, IL-6, IFN-γ and IL-10 levels. These analyses were performed immediately before and 7 days after the oral infection elimination. Patients from group I presenting oral infections reported clinical improvement of the symptoms of reactional episodes after dental treatment. Serum IL-1, TNF-α, IL-6, IFN-γ and IL-10 levels did not differ significantly before and after dental treatment as determined by the Wilcoxon test (p>0.05). Comparison of the 2 groups showed statistically significant differences in IL-1 and IL-6 at baseline and in IL-1, IL-6 and IL-10 on the occasion of both collections 7 days after therapy. Serum IL-6 and IL-10 levels in group I differed significantly at baseline compared to control (Mann-Whitney test; p<0.05). These results suggest that oral infection could be involved as a maintenance factor in the pathogenesis of leprosy reactional episodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human HOX genes encode transcription factors that act as master regulators of embryonic development. They are important in several processes such as cellular morphogenesis and differentiation. The HOXB5 gene in particular has been reported in some types of neoplasm, but not in oral cancer. OBJECTIVE: The present study investigated the expression of HOXB5 in oral squamous cell carcinoma (SCC) and in non-tumoral adjacent tissues, focusing on verifying its possible role as a broad tumor-associated gene and its association with histopathological and clinical (TNM) characteristics. MATERIAL AND METHODS: RT-PCR was performed to amplify HOXB5 mRNA in 15 OSCCs and adjacent non-tumoral epithelium. A possible association with TNM and histopathologic data was verifed by the chi-square and post-hoc t-test. RESULTS: HOXB5 was amplifed in 60% non-tumoral epithelium and in 93.3% carcinomas. No statistically signifcant differences were found regarding the HOXB5 mRNA expression and TNM or histological grade. CONCLUSION: HOXB5 is expressed in OSCCs and its role in cancer progression should be further investigated.