43 resultados para DnaK, Hsp70, cyanobacteria
Resumo:
Limited information is available on the interactions between environmental factors and algal growth in tropical and subtropical aquatic systems. We investigated the relationships between algal biomass (measured as chlorophyll, Chl-a) and light, total phosphorus (TP) and total nitrogen (TN) in longitudinal zones of subtropical reservoirs. We studied the seasonal variation of water variables in Itupararanga Reservoir (Brazil) and compared the results with 16 other subtropical lakes and reservoirs. The longitudinal zones in Itupararanga Reservoir were considered statistically different (p 0.05, MANOVA). From the riverine zone to the dam region of the reservoir, Spearman Correlation Test suggested that light limitation and TP limitation tended to decrease and increase, respectively. Although nitrate concentrations were high (400 g/L), the Spearman coefficients between Chl-a and TN and the TN:TP ratios (11:1 TN:TP 35:1) indicated that nitrogen may be co-limiting algal growth in the studied water body. Putting Itupararanga in a regional context allowed assessment of potential influences of land use on trophic state. Within the subtropical dataset, TP explained a greater percentage of variance in Chl-a (R2 = 0.70) than TN (R2 = 0.17). The main land use type within the reservoirs drainage area significantly influenced the concentrations of TP, TN, and Chl-a (p 0.05, MANOVA), with different relationships between nutrients and chlorophyll in forested (R2 = 0.12-0.33), agricultural (R2 = 0.50-0.68) and urban (R2 = 0.09-0.64) watersheds. Comparisons with literature values and those from reservoirs with less altered watersheds indicated that Itupararanga Reservoir is reaching the mesotrophic-eutrophic boundary, and further nutrient enrichment could cause water quality degradation.
Resumo:
Four different architectural acrylic paint formulations were tested by exposure to weathering for 7 years in the urban site of Sao Paulo and the coastal site of Ubatuba, South-East Brazil. Surface discolorations and detachment of coatings were assessed and the components of the biofilms were identified by standard microbiological methods. The painted surfaces of the mortar panels were much more discolored in Ubatuba, where major components of the biofilms were the cyanobacteria Gloeocapsa and Scytonema. In two of the four paint films, a pink coloration on the surface at this coastal site, caused mainly by red-pigmented Gloeocapsa, produced high discoloration ratings, but low degradation (as measured by detachment). Biofilms in Sao Paulo contained the same range of phototrophs, but in lesser quantity. However, fungal numbers, as determined by plating, were higher. Detachment ratings in this urban site were only slightly lower than in Ubatuba. The matt paint performed worst of the four, with silk and semi-gloss finishes giving lowest biodeterioration ratings. The matt elastomeric paint performed well at both sites, apart from becoming almost 100% covered by the pink biofilm in Ubatuba. Unpainted mortar panels became intensely discolored with a black biofilm, showing that all the paints had achieved one of their objectives, that of surface protection of the substrate. The value of PVC (pigment volume content) as an indicator of coatings biosusceptibility, is questioned. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Three formulations of fiber cement were evaluated for fungal colonization and color change after five years of exposure in aging stations located in urban (Sao Paulo), rural (Pirassununga) and coastal (Rio Grande) zones in Brazil. The lowest color change and fungal colonization were registered in Rio Grande, which has a temperate climate, as opposed to Sao Paulo and Pirassununga, which are tropical. The highest fungal colonization was recorded in Sao Paulo, one of the most air polluted cities in Brazil. Pirassununga samples had an intermediate fungal colonization, in spite of showing the highest color change with visible dark spots on the surfaces. These spots were identified as cyanobacteria, which significantly contributed to the darkening of the specimens. The fiber cement formulation, varying in proportion of organic fibers such as poly (vinyl alcohol) and cellulose, was less significant for fungal bioreceptivity than the characteristics of the exposure site. The most frequent fungal genus found in the tropical climate, in both urban and rural zones, and the main one responsible for the higher records in Sao Paulo, was Scytalidiurn sp. which was registered for the first time on this building material in Brazil. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The effect of Pigment Volume Content (PVC) on fungal growth on acrylic paint formulations with and without biocide, exposed to weathering in three different climatic regions in Brazil for four years, was studied Latex paints. with PVC of 30%, 35% and 50%, were applied to autoclaved aerated concrete blocks pre-covered with acrylic sealer and acrylic plaster They were exposed to equatorial, tropical and temperate climates in north, south-east, and south Brazil Cladosporium was the most abundant fungal genus detected in the biofilm on the surfaces of all paint formulations at all sites after four years Heaviest fungal colonization occurred in the tropical south-east and lightest in the temperate south of the country, but more phototrophs, principally cyanobacteria, were detected in the equatorial region PVC and presence of biocides were shown to be of less importance than environmental conditions (irradiance, humidity and temperature) for biofilm formation and consequent discolouration These results have important implications for testing of paint formulations (C) 2010 Elsevier B V All rights reserved
Resumo:
Observations of cells of axenic peach palm (Bactris gasipaes) microplants by light microscopy revealed movements of small particles within the cells. The phenomenon was characterized initially as Brownian movement, but electron microscopy revealed the presence of an intracellular bacterial community in these plants. Microscopy observations revealed the particular shapes of bacterial cells colonizing inner tissues of analyzed plants. Applying a molecular characterization by polymerase chain reaction and denaturing gradient gel electrophoresis, it was revealed the existence of bacterial rRNA within the plants. Sequencing of the rRNA identified three different phylogenetic groups; two bands had a high degree of similarity to sequences from Moraxella sp. and Brevibacillus sp., and a third sequence was similar to a non-cultivated cyanobacterium. The presence of those endosymbionts, called bacteriosomes, in axenic peach palm microplants raises the question of whether these stable endosymbionts were acquired in the process of evolution and how could they benefit the process of plants micropropagation.
Resumo:
Microcystins (MC), a family of heptapeptide toxins produced by some genera of Cyanobacteria, have potent hepatotoxicity and tumor-promoting activity. Leukocyte infiltration in the liver was observed in MC-induced acute intoxication. Although the mechanisms of hepatotoxicity are still unclear, neutrophil infiltration in the liver may play an important role in triggering toxic injury and tumor development. The present study reports the effects of MC-LA, MC-YR and MC-LR (1 and 1000 nM) on human and rat neutrophils functions in vitro. Cell viability, DNA fragmentation, mitochondrial membrane depolarization and intracellular reactive oxygen species (ROS) levels were measured by flow cytometry. Extracellular ROS content was measured by lucigenin-amplified chemiluminescence, and cytokines were determined by ELISA. We found that these MC increased interleukin-8 (IL-8), cytokine-induced neutrophil chemoattractant-2 alpha beta (CINC-2 alpha beta) and extracellular ROS levels in human and rat neutrophils. Apart from neutrophil presence during the inflammatory process of MC-induced injury, our results suggest that hepatic neutrophil accumulation is further increased by MC-induced neutrophil-derived chemokine. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The acute poisoning of chronic renal patients during hemodialysis sessions in 1996 in Caruaru City (Pernambuco State, Brazil) stimulated an intensive search for the cause of this severe complication. This search culminated in the identification of microcystins (MC), hepatotoxic cyclic heptapeptides produced by cyanobacteria, as the causative agents. More than ten years later, additional research data provides us with a better understanding of the factors related to cyanobacterial bloom occurrence and production of MC in Brazil and other South American countries. The contamination of water bodies and formation of toxic blooms remains a very serious concern, especially in countries in which surface water is used as the main source for human consumption. The purpose of this review is to highlight the discoveries of the past 15 years that have brought South American researchers to their current level of understanding of toxic cyanobacteria species and that have contributed to their knowledge of factors related to MC production, mechanisms of action and consequences for human health and the environment. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Anatoxin-a(s) is a potent irreversible inhibitor of the enzyme acetylcholinesterase with a unique N-hydroxyguanidine methylphosphate ester chemical structure. Determination of this toxin in environmental samples is hampered by the lack of specific methods for its detection. Using the toxic strain of Anabaena lemmermani PH-160 B as positive control, the fragmentation characteristics of anatoxin-a(s) under collision-induced dissociation conditions have been investigated and new LC-MS/MS methods proposed. Recommended ion transitions for correct detection of this toxin are 253 > 58, 253 > 159, 235 > 98 and 235 > 96. Chromatographic separation is better achieved under HILIC conditions employing a ZIC-HILIC column. This method was used to confirm for the first time the production of anatoxin-a(s) by strains of Anabaena oumiana ITEP-025 and ITEP-026. Considering no standard solutions are commercially available, our results will be of significant use for the correct identification of this toxin by LC-MS/MS. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A nuclear magnetic resonance ((1)H NMR) method for the determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental aqueous samples was developed and validated. L-BMAA is a neurotoxic modified amino acid that can be produced by cyanobacteria in aqueous environments. This toxin was extracted from samples by means of solid-phase extraction (SPE) and identified and quantified by (1)H NMR without further derivatization steps. The lower limit of quantification (LLOQ) was 5 mu g/mL Good inter and intra-assay precision was also observed (relative standard deviation <8.5%) with the use of 4-nitro-DL-phenylalanine as an internal standard (IS). This method of 1H NMR analysis is not time consuming and can be readily utilized to monitor L-BMAA and confirm its presence in environmental and biological samples. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work is focused on the influence of dilution rate (0.08 <= D <= 0.32 d(1)) on the continuous cultivation and biomass composition of Arthrospira (Spirulina) platensis using three different concentrations of ammonium chloride (c(No) = 1.0, 5.0 and 10 mol m (3)) as nitrogen source. At c(No) = 1.0 and 5.0 mol m (3) the biomass protein content was an increasing function of D, whereas, when using c(No) = 10 mol m (3), the highest protein content (72.5%) was obtained at D = 0.12 d (1). An overall evaluation of the process showed that biomass protein content increased with the rate of nitrogen supply (D c(No)) up to 72.5% at D c(No) = 1.20 mol m (3) d (1). Biomass lipid content was an increasing function of D only when the nitrogen source was the limiting factor for the growth (D c(No) <= 0.32 mol m (-3) d (1)), which occurred solely with c(No), = 1.0 mol m (3). Under such conditions, A. platensis reduced its nitrogen reserve in the form of proteins, while maintaining almost unvaried its lipid content. The latter was affected only when the concentration of nitrogen was extremely low (c(No) = 1.0 mol m (3)). The most abundant fatty acids were the palmitic (45.8 +/- 5.20%) and the gamma-linolenic (20.1 +/- 2.00%) ones. No significant alteration in the profiles either of saturated or unsaturated fatty acids was observed with c(No) <= 5.0 mol m (3), prevailing those with 16 and 18 carbons. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study dealt with the influence of both the feeding time and light intensity on the fed-batch culture of the cyanobacterium Spirulina (Arthrospira) platensis using ammonium chloride as a nitrogen source. For this purpose, a 2 2 plus star central composite experimental design combined with response surface methodology was employed, and the maximum cell concentration (X-m), the cell productivity (P-X), and the yield of biomass on nitrogen (Y-X/N) were selected as the response variables. The optimum values of X-m (1,833 mgL(-1)) and Y-X/N (5.9 gg(-1)) estimated by the model at light intensity of 13 klux and feeding time of 17.2 days were very close to those obtained experimentally under these conditions (X-m = 1,771 +/- 41 mg L-1; Y-X/N = 5.7 +/- 0.17 gg(-1)). The cell productivity was a decreasing function of the ammonium chloride feeding time and a quadratic function of the light intensity. The protein and lipid contents of dry biomass collected at the end of cultivations were shown to decrease with increasing light intensity.
Resumo:
Cylindrospermopsin (CYN) belongs to a group of toxins produced by several strains of freshwater cyanobacteria. It is a compact zwitterionic molecule composed of a uracil section and a tricyclic guanidinium portion with a primarily hepatotoxic effect. Using low multi-stage and high-resolution mass spectrometry, the gas-phase reactions of this toxin have been investigated. Our data show that collision-induced dissociation (CID) spectra of CYN are dominated by neutral losses, and three major initial fragmentation pathways are clearly distinguishable. Interestingly, comparative analysis of protonated and cationizated molecules showed a significant difference in the balance of the SO(3) and terminal ring elimination. These data indicate that the differential ion mobility of H(+), Li(+), Na(+) and K(+) leads to different fragmentation pathways, giving rise to mass spectra with different profiles. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Microcystins (MC) are a family of hepatotoxic cyclic heptapeptides produced by a number of different cyanobacterial species. Considering the recent advances in the characterization of deprotonated peptides by mass spectrometry, the fragmentation behavior of four structurally related microcystin compounds was investigated using collision-induced dissociation (CID) experiments on an orbitrap mass spectrometer. It is demonstrated in this study that significant structural information can be obtained from the CID spectra of deprotonated microcystins. A predominant ring-opening reaction at the isoMeAsp residue, as well as two major complementary fragmentation pathways, was observed, reducing the complexity of the product ion spectra in comparison with spectra observed from protonated species. This proposed fragmentation behavior was applied to characterize [Leu(1)]MC-LR from a cyanobacterial cell extract. In conclusion, CID spectra of microcystins in the negative ion mode provide rich structurally informative mass spectra which greatly enhance confidence in structural assignments, in particular when combined with complementary positive ion CID spectra. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Cyanobacterial strains isolated from terrestrial and freshwater habitats in Brazil were evaluated for their antimicrobial and siderophore activities. Metabolites of fifty isolates were extracted from the supernatant culture media and cells using ethyl acetate and methanol, respectively. The extracts of 24 isolates showed antimicrobial activity against several pathogenic bacteria and one yeast. These active extracts were characterized by Q-TOF/MS. The cyanobacterial strains Cylindrospermopsis raciborskii 339-T3, Synechococcus elongatus PCC7942, Microcystis aeruginosa NPCD-1, M. panniformis SCP702 and Fischerella sp. CENA19 provided the most active extracts. The 50 cyanobacterial strains were also screened for the presence of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes and microcystin production. Putative fragment genes coding for NRPS adenylation domains and PKS keto-synthase domains were successfully PCR amplified from 92% and 80% of cyanobacterial strains, respectively. The potential therapeutical compounds siderophores were detected in five cyanobacterial isolates. Microcystin production was detected by ELISA test in 26% of the isolates. Further a protease inhibitor substance was detected by LC-MS/MS in the M. aeruginosa NPLJ-4 extract and the presence of aeruginosin and cyanopeptolin was confirmed by PCR amplification using specific primers, and sequenced. This screening study showed that Brazilian cyanobacterial isolates are a rich source of natural products with potential for pharmacological and biotechnological applications. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
A nostocalean nitrogen-fixing cyanobacterium isolated from an eutrophic freshwater reservoir located in Piracicaba, Sao Paulo, Brazil, was evaluated for the production of hepatotoxic cyclic heptapeptides, microcystins. Morphologically this new cyanobacterium strain appears closest to Nostoc, however, in the phylogenetic analysis of 165 rRNA gene it falls into a highly stable cluster distantly only related to the typical Nostoc cluster. Extracts of Nostoc sp. CENA88 cultured cells, investigated using ELISA assay, gave positive results and the microcystin profile revealed by ESI-Q-TOF/MS/MS analysis confirmed the production of [Dha(7)]MCYST-YR. Further, Nostoc sp. CENA88 genomic DNA was analyzed by PCR for sequences of mcyD, mcyE and mcyG genes of microcystin synthetase (mcy) cluster. The result revealed the presence of mcyD, mcyE and mcyG genes with similarities to those from mcy of Nostoc sp. strains 152 and IO-102-I and other cyanobacterial genera. The phylogenetic tree based on concatenated McyG, McyD and McyE amino acids clustered the sequences according to cyanobacterial genera, with exception of the Nostoc sp. CENA88 sequence, which was placed in a clade distantly related from other Nostoc strains, as previously observed also in the 165 rRNA phylogenetic analysis. The present study describes for the first time a Brazilian Nostoc microcystin producer and also the occurrence of demethyl MCYST-YR variant in this genus. The sequenced Nostoc genes involved in the microcystin synthesis can contribute to a better understanding of the toxigenicity and evolution of this cyanotoxin. (C) 2009 Elsevier Ltd. All rights reserved.