35 resultados para Discrimination Learning
Resumo:
A rapid method for classification of mineral waters is proposed. The discrimination power was evaluated by a novel combination of chemometric data analysis and qualitative multi-elemental fingerprints of mineral water samples acquired from different regions of the Brazilian territory. The classification of mineral waters was assessed using only the wavelength emission intensities obtained by inductively coupled plasma optical emission spectrometry (ICP OES), monitoring different lines of Al, B, Ba, Ca, Cl, Cu, Co, Cr, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Sb, Si, Sr, Ti, V, and Zn, and Be, Dy, Gd, In, La, Sc and Y as internal standards. Data acquisition was done under robust (RC) and non-robust (NRC) conditions. Also, the combination of signal intensities of two or more emission lines for each element were evaluated instead of the individual lines. The performance of two classification-k-nearest neighbor (kNN) and soft independent modeling of class analogy (SIMCA)-and preprocessing algorithms, autoscaling and Pareto scaling, were evaluated for the ability to differentiate between the various samples in each approach tested (combination of robust or non-robust conditions with use of individual lines or sum of the intensities of emission lines). It was shown that qualitative ICP OES fingerprinting in combination with multivariate analysis is a promising analytical tool that has potential to become a recognized procedure for rapid authenticity and adulteration testing of mineral water samples or other material whose physicochemical properties (or origin) are directly related to mineral content.
Resumo:
PIBIC-CNPq-Conselho Nacional de Desenvolvimento Cientifico e Technologico
Resumo:
The adaptive process in motor learning was examined in terms of effects of varying amounts of constant practice performed before random practice. Participants pressed five response keys sequentially, the last one coincident with the lighting of a final visual stimulus provided by a complex coincident timing apparatus. Different visual stimulus speeds were used during the random practice. 33 children (M age=11.6 yr.) were randomly assigned to one of three experimental groups: constant-random, constant-random 33%, and constant-random 66%. The constant-random group practiced constantly until they reached a criterion of performance stabilization three consecutive trials within 50 msec. of error. The other two groups had additional constant practice of 33 and 66%, respectively, of the number of trials needed to achieve the stabilization criterion. All three groups performed 36 trials under random practice; in the adaptation phase, they practiced at a different visual stimulus speed adopted in the stabilization phase. Global performance measures were absolute, constant, and variable errors, and movement pattern was analyzed by relative timing and overall movement time. There was no group difference in relation to global performance measures and overall movement time. However, differences between the groups were observed on movement pattern, since constant-random 66% group changed its relative timing performance in the adaptation phase.
Resumo:
An experiment was conducted to investigate the persistence of the effect of ""bandwidth knowledge of results (KR)"" manipulated during the learning phase of performing a manual force-control task. The experiment consisted of two phases, an acquisition phase with the goal of maintaining 60% maximum force in 30 trials, and a second phase with the objective of maintaining 40% of maximum force in 20 further trials. There were four bandwidths of KR: when performance error exceeded 5, 10, or 15% of the target, and a control group (0% bandwidth). Analysis showed that 5, 10, and 15% bandwidth led to better performance than 0% bandwidth KR at the beginning of the second phase and persisted during the extended trials.
Resumo:
The Learning Object (OA) is any digital resource that can be reused to support learning with specific functions and objectives. The OA specifications are commonly offered in SCORM model without considering activities in groups. This deficiency was overcome by the solution presented in this paper. This work specified OA for e-learning activities in groups based on SCORM model. This solution allows the creation of dynamic objects which include content and software resources for the collaborative learning processes. That results in a generalization of the OA definition, and in a contribution with e-learning specifications.
Resumo:
One of the e-learning environment goal is to attend the individual needs of students during the learning process. The adaptation of contents, activities and tools into different visualization or in a variety of content types is an important feature of this environment, bringing to the user the sensation that there are suitable workplaces to his profile in the same system. Nevertheless, it is important the investigation of student behaviour aspects, considering the context where the interaction happens, to achieve an efficient personalization process. The paper goal is to present an approach to identify the student learning profile analyzing the context of interaction. Besides this, the learning profile could be analyzed in different dimensions allows the system to deal with the different focus of the learning.
Resumo:
In this paper, a framework for detection of human skin in digital images is proposed. This framework is composed of a training phase and a detection phase. A skin class model is learned during the training phase by processing several training images in a hybrid and incremental fuzzy learning scheme. This scheme combines unsupervised-and supervised-learning: unsupervised, by fuzzy clustering, to obtain clusters of color groups from training images; and supervised to select groups that represent skin color. At the end of the training phase, aggregation operators are used to provide combinations of selected groups into a skin model. In the detection phase, the learned skin model is used to detect human skin in an efficient way. Experimental results show robust and accurate human skin detection performed by the proposed framework.
Resumo:
This paper investigates how to make improved action selection for online policy learning in robotic scenarios using reinforcement learning (RL) algorithms. Since finding control policies using any RL algorithm can be very time consuming, we propose to combine RL algorithms with heuristic functions for selecting promising actions during the learning process. With this aim, we investigate the use of heuristics for increasing the rate of convergence of RL algorithms and contribute with a new learning algorithm, Heuristically Accelerated Q-learning (HAQL), which incorporates heuristics for action selection to the Q-Learning algorithm. Experimental results on robot navigation show that the use of even very simple heuristic functions results in significant performance enhancement of the learning rate.
Resumo:
How does knowledge management (KM) by a government agency responsible for environmental impact assessment (EIA) potentially contribute to better environmental assessment and management practice? Staff members at government agencies in charge of the EIA process are knowledge workers who perform judgement-oriented tasks highly reliant on individual expertise, but also grounded on the agency`s knowledge accumulated over the years. Part of an agency`s knowledge can be codified and stored in an organizational memory, but is subject to decay or loss if not properly managed. The EIA agency operating in Western Australia was used as a case study. Its KM initiatives were reviewed, knowledge repositories were identified and staff surveyed to gauge the utilisation and effectiveness of such repositories in enabling them to perform EIA tasks. Key elements of KM are the preparation of substantive guidance and spatial information management. It was found that treatment of cumulative impacts on the environment is very limited and information derived from project follow-up is not properly captured and stored, thus not used to create new knowledge and to improve practice and effectiveness. Other opportunities for improving organizational learning include the use of after-action reviews. The learning about knowledge management in EIA practice gained from Western Australian experience should be of value to agencies worldwide seeking to understand where best to direct their resources for their own knowledge repositories and environmental management practice. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We address here aspects of the implementation of a memory evolutive system (MES), based on the model proposed by A. Ehresmann and J. Vanbremeersch (2007), by means of a simulated network of spiking neurons with time dependent plasticity. We point out the advantages and challenges of applying category theory for the representation of cognition, by using the MES architecture. Then we discuss the issues concerning the minimum requirements that an artificial neural network (ANN) should fulfill in order that it would be capable of expressing the categories and mappings between them, underlying the MES. We conclude that a pulsed ANN based on Izhikevich`s formal neuron with STDP (spike time-dependent plasticity) has sufficient dynamical properties to achieve these requirements, provided it can cope with the topological requirements. Finally, we present some perspectives of future research concerning the proposed ANN topology.
Resumo:
Sound source localization (SSL) is an essential task in many applications involving speech capture and enhancement. As such, speaker localization with microphone arrays has received significant research attention. Nevertheless, existing SSL algorithms for small arrays still have two significant limitations: lack of range resolution, and accuracy degradation with increasing reverberation. The latter is natural and expected, given that strong reflections can have amplitudes similar to that of the direct signal, but different directions of arrival. Therefore, correctly modeling the room and compensating for the reflections should reduce the degradation due to reverberation. In this paper, we show a stronger result. If modeled correctly, early reflections can be used to provide more information about the source location than would have been available in an anechoic scenario. The modeling not only compensates for the reverberation, but also significantly increases resolution for range and elevation. Thus, we show that under certain conditions and limitations, reverberation can be used to improve SSL performance. Prior attempts to compensate for reverberation tried to model the room impulse response (RIR). However, RIRs change quickly with speaker position, and are nearly impossible to track accurately. Instead, we build a 3-D model of the room, which we use to predict early reflections, which are then incorporated into the SSL estimation. Simulation results with real and synthetic data show that even a simplistic room model is sufficient to produce significant improvements in range and elevation estimation, tasks which would be very difficult when relying only on direct path signal components.
Resumo:
Landscape unit discrimination for pedological surveys by orbital spectral response. The objective of tins study was compare two soil survey methods. The first was performed by methods traditionally used to distinguish landscape units and soil class discrimination. The second was based on soil class distinction through orbital spectral response. In order to establish soil characteristics and their classification, soil samples were collected at two depths in a grid system, with a distance of 500 meters between points. With these samples, physical and chemical analyses were carried out. In the sampling points, the apparent reflectance of the soil, front the orbital image, was determined and, through cluster analysis landscape units were established. In order to evaluate the resemblance reliability between the landscape units established in each method, the Kappa index was used, the value set for the confusion matrix was 0.43, indicating high quality in the comparison, showing that the non-conventional method was as close as the one carried out by photointerpretation.
Resumo:
This article examines the subject matter of learning within the context of information society, through an inquiry concerning both the reforms in education adopted in Brazil in the last thirty years and their results. It provides a revision on the explanations of school failure based on assumptions of learning problems due to cognitive and linguistic deficits. From the guidelines related with written school forms as well as the constant cultural oppression accomplished inside the school, the article claims the necessity of changing the psychological and pedagogic views that, under the label of democratic practices, determine school institutions and its daily life, by means of instrumental relations with knowledge that disregard the reading practices which are congenial to popular culture.
Resumo:
This paper aims to present an overview on characteristics, roles and responsibilities of those who arc in charge. of the Corporate Educational Systems in several organizations from distinct industries in Brazil, based on a research carried out by the authors. The analysis compares what is available in the literature on this subject so that it may provide insights on how Brazilian companies have dealt with the difficult task of developing competences in their employees. Special attention is given to the Chief Learning Officer`s role (or the lack of it) - someone who was supposed to be in charge of the employees` development processes in a given organization. The results show that this role has not been a clear or unanimous concept yet, neither in terms of the functions to be performed nor the so-called strategic importance given to this sort of executive. This research is both exploratory and descriptive, and due to the use of intentional sample, the inferences are limited. Despite these limitations, its comments may enrich the discussion on this subject.
Resumo:
Protein malnutrition induces structural, neurochemical and functional changes in the central nervous system leading to alterations in cognitive and behavioral development of rats. The aim of this work was to investigate the effects of postnatal protein malnutrition on learning and memory tasks. Previously malnourished (6% protein) and well-nourished rats (16% protein) were tested in three experiments: working memory tasks in the Morris water maze (Experiment I), recognition memory of objects (Experiment II), and working memory in the water T-maze (Experiment III). The results showed higher escape latencies in malnourished animals in Experiment I, lower recognition indexes of malnourished animals in Experiment II, and no differences due to diet in Experiment III. It is suggested that protein malnutrition imposed on early life of rats can produce impairments on both working memory in the Morris maze and recognition memory in the open field tests.