25 resultados para CONVEX HYPERSURFACES
Resumo:
Optimization methods that employ the classical Powell-Hestenes-Rockafellar augmented Lagrangian are useful tools for solving nonlinear programming problems. Their reputation decreased in the last 10 years due to the comparative success of interior-point Newtonian algorithms, which are asymptotically faster. In this research, a combination of both approaches is evaluated. The idea is to produce a competitive method, being more robust and efficient than its `pure` counterparts for critical problems. Moreover, an additional hybrid algorithm is defined, in which the interior-point method is replaced by the Newtonian resolution of a Karush-Kuhn-Tucker (KKT) system identified by the augmented Lagrangian algorithm. The software used in this work is freely available through the Tango Project web page:http://www.ime.usp.br/similar to egbirgin/tango/.
Resumo:
Two Augmented Lagrangian algorithms for solving KKT systems are introduced. The algorithms differ in the way in which penalty parameters are updated. Possibly infeasible accumulation points are characterized. It is proved that feasible limit points that satisfy the Constant Positive Linear Dependence constraint qualification are KKT solutions. Boundedness of the penalty parameters is proved under suitable assumptions. Numerical experiments are presented.
Resumo:
In this paper we study n-dimensional complete spacelike submanifolds with constant normalized scalar curvature immersed in semi-Riemannian space forms. By extending Cheng-Yau`s technique to these ambients, we obtain results to such submanifolds satisfying certain conditions on both the squared norm of the second fundamental form and the mean curvature. We also characterize compact non-negatively curved submanifolds in De Sitter space of index p.
Resumo:
We prove that a polar orthogonal representation of a real reductive algebraic group has the same closed orbits as the isotropy representation of a pseudo-Riemannian symmetric space. We also develop a partial structural theory of polar orthogonal representations of real reductive algebraic groups which slightly generalizes some results of the structural theory of real reductive Lie algebras. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The concept of taut submanifold of Euclidean space is due to Carter and West, and can be traced back to the work of Chern and Lashof on immersions with minimal total absolute curvature and the subsequent reformulation of that work by Kuiper in terms of critical point theory. In this paper, we classify the reducible representations of compact simple Lie groups, all of whose orbits are tautly embedded in Euclidean space, with respect to Z(2)-coefficients.
Resumo:
Let A be a finite dimensional k-algebra over an algebraically closed field. Assume A=kQ/I where Q is a quiver without oriented cycles. We say that A is tilt-critical if it is not tilted but every proper convex subcategory of A is tilted. We describe the tilt-critical algebras which are strongly simply connected and tame.
Resumo:
We investigate the isoperimetric problem of finding the regions of prescribed volume with minimal boundary area between two parallel horospheres in hyperbolic 3-space (the part of the boundary contained in the horospheres is not included). We reduce the problem to the study of rotationally invariant regions and obtain the possible isoperimetric solutions by studying the behavior of the profile curves of the rotational surfaces with constant mean curvature in hyperbolic 3-space. We also classify all the connected compact rotational surfaces M of constant mean curvature that are contained in the region between two horospheres, have boundary partial derivative M either empty or lying on the horospheres, and meet the horospheres perpendicularly along their boundary.
Resumo:
In this work, we introduce a necessary sequential Approximate-Karush-Kuhn-Tucker (AKKT) condition for a point to be a solution of a continuous variational inequality, and we prove its relation with the Approximate Gradient Projection condition (AGP) of Garciga-Otero and Svaiter. We also prove that a slight variation of the AKKT condition is sufficient for a convex problem, either for variational inequalities or optimization. Sequential necessary conditions are more suitable to iterative methods than usual punctual conditions relying on constraint qualifications. The AKKT property holds at a solution independently of the fulfillment of a constraint qualification, but when a weak one holds, we can guarantee the validity of the KKT conditions.
Resumo:
The nonadiabatic photochemistry of 6-azauracil has been studied by means of the CASPT2//CASSCF protocol and double-zeta plus polarization ANO basis sets. Minimum energy states, transition states, minimum energy paths, and surface intersections have been computed in order to obtain an accurate description of several potential energy hypersurfaces. It is concluded that, after absorption of ultraviolet radiation (248 nm), two main relaxation mechanisms may occur, via which the lowest (3)(pi pi*) state can be populated. The first one takes place via a conical intersection involving the bright (1)(pi pi*) and the lowest (1)(n pi*) states, ((1)pi pi*/(1)n pi*)(CI), from which a low energy singlet-triplet crossing, ((1)n pi*/(3)pi pi*)(STC), connecting the (1)(n pi*) state to the lowest (3)(pi pi*) triplet state is accessible. The second mechanism arises via a singlet-triplet crossing, ((1)pi pi*/(3)n pi*)(STC), leading to a conical intersection in the triplet manifold, ((3)n pi*/(3)pi pi*)(CI), evolving to the lowest (3)(pi pi*) state. Further radiationless decay to the ground state is possible through a (gs/(3)pi pi*)(STC).
Resumo:
The nonadiabatic photochemistry of the guanine molecule (2-amino-6-oxopurine) and some of its tautomers has been studied by means of the high-level theoretical ab initio quantum chemistry methods CASSCF and CASPT2. Accurate computations, based by the first time on minimum energy reaction paths, states minima, transition states, reaction barriers, and conical intersections on the potential energy hypersurfaces of the molecules lead to interpret the photochemistry of guanine and derivatives within a three-state model. As in the other purine DNA nucleobase, adenine, the ultrafast subpicosecond fluorescence decay measured in guanine is attributed to the barrierless character of the path leading from the initially populated (1)(pi pi* L-a) spectroscopic state of the molecule toward the low-lying methanamine-like conical intersection (gs/pi pi* L-a)(CI). On the contrary, other tautomers are shown to have a reaction energy barrier along the main relaxation profile. A second, slower decay is attributed to a path involving switches toward two other states, (1)(pi pi* L-b) and, in particular, (1)(n(o)pi*), ultimately leading to conical intersections with the ground state. A common framework for the ultrafast relaxation of the natural nucleobases is obtained in which the predominant role of a pi pi*-type state is confirmed.