83 resultados para BIOLOGICAL-ACTIVITY


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The daily intake of phenolic compounds does not necessarily reflect the dose at which they reach the physiological targets in the organisms. The biological activity of phenolic compounds metabolites found in blood, organs and target tissues, as a result of digestive and hepatic activity, may differ from those of the native forms of the substances. This review discusses the absorption and metabolism of phenolic acids, a class of phenolic compounds abundant in food, and the methodologies used for evaluation of bioavailability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Brazilian propolis type 6 (Atlantic forest, Bahia) is distinct from the other types of propolis especially due to absence of flavonoids and presence of other non-polar, long chain compounds, but presenting good in vitro and in vivo antimicrobial activity. Several authors have suggested that fatty acids found in this propolis might be responsible for its antimicrobial activity; however, so far no evidence concerning this finding has been reported in the literature. The goals of this study were to evaluate the antibacterial activity of the main pure fatty acids in the ethanolic extract and fractions and elucidate the chemical nature of the bioactive compounds isolated from Brazilian propolis type 6. Methods: Brazilian propolis type 6 ethanolic extract (EEP), hexane fraction (H-Fr), major fatty acids, and isolated sub-fractions were analyzed using high performance liquid chromatography (HPLC), high resolution gas chromatography with flame ionization detection (HRGC-FID), and gas chromatography-mass spectrometry (GC-MS). Three sub-fractions of H-Fr were obtained through preparative HPLC. Antimicrobial activity of EEP, H-Fr, sub-fractions, and fatty acids were tested against Staphyloccus aureus ATCC 25923 and Streptococcus mutans Ingbritt 1600 using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results: EEP and H-Fr inhibited the growth of the microorganisms tested; nevertheless, no antimicrobial activity was found for the major fatty acids. The three sub-fractions (1, 2, and 3) were isolated from H-Fr by preparative HPLC and only sub-fraction 1 showed antimicrobial activity. Conclusion: a) The major fatty acids tested were not responsible for the antimicrobial activity of propolis type 6; b) Sub-fraction 1, belonging to the benzophenone class, was responsible for the antimicrobial activity observed in the present study. The identification of the bioactive compound will improve the development of more efficient uses of this natural product.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goal of the study was to evaluate the ability of filamentous fungi to biotransform the pentacyclic triterpene lupeol. The microbial transformations were carried out in shake flasks in different media. Experiments were also run with control flasks. Samples of each culture were taken every 24 hours, extracted with ethyl acetate, and analyzed by GC-MS. The biotransformation of lupeol by Aspergillus ochraceus and Mucor rouxii afforded two compounds in each culture, which were detected in the cultures developed for more than seven days only in the Koch's K1 medium. The obtained data demonstrated that A. ochraceus is a good biocatalyst to introduce double bonds in the lupeol structure, whereas M. rouxii exhibits ability to biocatalyze oxygen insertions in that pentacyclic triterpene. Mass spectrometry was demonstrated to be an efficient analytical method to select promising biocatalysts for the compound investigated in this study. The biotransformation processes were influenced by the culture medium and incubation period. The obtained results open the perspective of using A. ochraceus and M. rouxii in pentacyclic triterpene biotransformations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Leukotriene B(4) (LTB(4)) is a potent inflammatory mediator that also stimulates the immune response. In addition, it promotes polymorphonuclear leukocyte phagocytosis, chemotaxis, chemokinesis and modulates cytokines release. Regarding chemical instability of the leukotriene molecule, in the present study we assessed the immunomodulatory activities conferred by LTB(4) released from microspheres (MS). A previous oil-in-water emulsion solvent extraction-evaporation method was chosen to prepare LTB(4)-loaded MS. Results: In the mice cremasteric microcirculation, intraescrotal injection of 0.1 ml of LTB(4)-loaded MS provoked significant increases in leukocyte rolling flux, adhesion and emigration besides significant decreases in the leukocyte rolling velocity. LTB(4)-loaded MS also increase peroxisome proliferator-activated receptor-alpha (PPAR alpha) expression by murine peritoneal macrophages and stimulate them to generate nitrite levels. Monocyte chemoattractant protein-I (MCP-I) and nitric oxide (NO) productions were also increased when human umbilical vein and artery endothelial cells (HUVECs and HUAECs, respectively) were stimulated with LTB(4)-loaded MS. Conclusion: LTB(4)-loaded MS preserve the biological activity of the encapsulated mediator indicating their use as a new strategy to modulate cell activation, especially in the innate immune response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The decomposition of peroxynitrite to nitrite and dioxygen at neutral pH follows complex kinetics, compared to its isomerization to nitrate at low pH. Decomposition may involve radicals or proceed by way of the classical peracid decomposition mechanism. Peroxynitrite (ONOOH/ONOO(-)) decomposition has been proposed to involve formation of peroxynitrate (O(2)NOOH/O(2)NOO(-)) at neutral pH (D. Gupta, B. Harish, R. Kissner and W. H. Koppenol, Dalton Trans., 2009, DOI: 10.1039/b905535e, see accompanying paper in this issue). Peroxynitrate is unstable and decomposes to nitrite and dioxygen. This study aimed to investigate whether O(2)NOO(-) formed upon ONOOH/ONOO(-) decomposition generates singlet molecular oxygen [O(2) ((1)Delta(g))]. As unequivocally revealed by the measurement of monomol light emission in the near infrared region at 1270 nm and by chemical trapping experiments, the decomposition of ONOO(-) or O(2)NOOH at neutral to alkaline pH generates O(2) ((1)Delta(g)) at a yield of ca. 1% and 2-10%, respectively. Characteristic light emission, corresponding to O(2) ((1)Delta(g)) monomolecular decay was observed for ONOO(-) and for O(2)NOOH prepared by reaction of H(2)O(2) with NO(2)BF(4) and of H(2)O(2) with NO(2)(-) in HClO(4). The generation of O(2) ((1)Delta(g)) from ONOO(-) increased in a concentration-dependent manner in the range of 0.1-2.5 mM and was dependent on pH, giving a sigmoid pro. le with an apparent pK(a) around pD 8.1 (pH 7.7). Taken together, our results clearly identify the generation of O(2) ((1)Delta(g)) from peroxynitrate [O(2)NOO(-) -> NO(2)(-) + O(2) ((1)Delta(g))] generated from peroxynitrite and also from the reactions of H(2)O(2) with either NO(2)BF(4) or NO(2)(-) in acidic media.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diabetes mellitus (DM) is a disease that affects a large number of people, and the number of problems associated with the disease has been increasing in the past few decades. These problems include cardiovascular disorders, blindness and the eventual need to amputate limbs. Therefore, the quality of life for people living with DM is less than it is for healthy people. In several cases, metabolic syndrome (MS), which can be considered a disturbance of the lipid metabolism, is associated with DM. In this work, two drugs used to treat DM, pioglitazone and rosiglitazone, were studied using theoretical methods, and their molecular properties were related to the biological activity of these drugs. From the results, it was possible to correlate the properties of each substance-particularly electronic properties-with the biological interactions that are linked to their pharmacological effects. These results suggest that there are future prospects for designing or developing new drugs based on the correlation between theoretical and experimental properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study we investigated the gene expression of proteins related to myostatin (MSTN) signaling during skeletal muscle longitudinal growth. To promote muscle growth, Wistar male rats were submitted to a stretching protocol for different durations (12, 24, 48, and 96 hours). Following this protocol, soleus weight and length and sarcomere number were determined. In addition, expression levels of the genes that encode MSTN, follistatin isoforms 288 and 315 (FLST288 and FLST315), follistatin-like 3 protein (FLST-L3), growth and differentiation factor-associated protein-1 (GASP-1), activin IIB receptor (ActIIB), and SMAD-7 were determined by real-time polymerase chain reaction. Prolonged stretching increased soleus weight, length, and sarcomere number. In addition, MSTN gene expression was increased at 12-24 hours, followed by a decrease at 96 hours when compared with baseline values. FLST isoforms, FLST-L3, and GASP-1 mRNA levels increased significantly over all time-points. ActIIB gene expression decreased quickly at 12-24 hours. SMAD-7 mRNA levels showed a late increase at 48 hours, which peaked at 96 hours. The gene expression pattern of inhibitory proteins related to MSTN signaling suggests a strong downregulation of this pathway in response to prolonged stretching. Muscle Nerve 40: 992-999, 2009

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ticks are blood-feeding arthropods that secrete immunomodulatory molecules through their saliva to antagonize host inflammatory and immune responses. As dendritic cells (DCs) play a major role in host immune responses, we studied the effects of Rhipicephalus sanguineus tick saliva on DC migration and function. Bone marrow-derived immature DCs pre-exposed to tick saliva showed reduced migration towards macrophage inflammatory protein (MIP)-1 alpha, MIP-1 beta and regulated upon activation, normal T cell expressed and secreted (RANTES) chemokines in a Boyden microchamber assay. This inhibition was mediated by saliva which significantly reduced the percentage and the average cell-surface expression of CC chemokine receptor CCR5. In contrast, saliva did not alter migration of DCs towards MIP-3 beta, not even if the cells were induced for maturation. Next, we evaluated the effect of tick saliva on the activity of chemokines related to DC migration and showed that tick saliva per se inhibits the chemotactic function of MIP-1 alpha, while it did not affect RANTES, MIP-1 beta and MIP-3 beta. These data suggest that saliva possibly reduces immature DC migration, while mature DC chemotaxis remains unaffected. In support of this, we have analyzed the percentage of DCs on mice 48 h after intradermal inoculation with saliva and found that the DC turnover in the skin was reduced compared with controls. Finally, to test the biological activity of the saliva-exposed DCs, we transferred DCs pre-cultured with saliva and loaded with the keyhole limpet haemocyanin (KLH) antigen to mice and measured their capacity to induce specific T cell cytokines. Data showed that saliva reduced the synthesis of both T helper (Th)1 and Th2 cytokines, suggesting the induction of a non-polarised T cell response. These findings propose that the inhibition of DCs migratory ability and function may be a relevant mechanism used by ticks to subvert the immune response of the host. (c) 2007 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent works have pointed to the use of volatile electrolytes such as carbon dioxide (CO(2)) dissolved in aqueous solutions as a promising alternative to the precipitating agents conventionally used for protein recovery in the food and pharmaceutical industries. In this work we investigated experimental and theoretical aspects of the precipitation of porcine insulin, a biomolecule of pharmaceutical interest, using CO(2) as an acid- precipitating agent. The Solubility of porcine insulin in NaHCO(3) solutions in pressurized CO(2) was determined as a function of temperature and pressure, with a minimum being observed close to the protein isoclectric point. A thermodynamic model was developed and successfully utilized to correlate the experimental data. Insulin was considered a polyelectrolyte in the model and its self-association reactions were also taken into account. The biological activity of insulin was maintained after precipitation With CO(2), although some activity can be lost if foam is formed in the depressurization step. Biotechnol. Bioeng. 2009;103: 909-919. (C) 2009 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the recombinant thyroid-stimulating hormone (rhTSH) is secreted by stably transfected Chinese hamster ovary (CHO-hTSH) cells, a bioprocess consisting of immobilizing the cells on a substrate allowing their multiplication is very suitable for rhTSH recovering from supernatants at relative high degree of purity. In addition, such a system has also the advantage of easily allowing delicate manipulations of culture medium replacement. In the present study, we show the development of a laboratory scale bioprocess protocol of CHO-hTSH cell cultures on cytodex microcarriers (MCs) in a 1 L bioreactor, for the preparation of rhTSH batches in view of structure/function studies. CHO-hTSH cells were cultivated on a fetal bovine serum supplemented medium during cell growth phase. For rhTSH synthesis phase, 75% of supernatant was replaced by animal protein-free medium every 24 h. Cell cultures were monitored for agitation (rpm), temperature (A degrees C), dissolved oxygen (% DO), pH, cell concentration, MCs coverage, glucose consumption, lactate production, and rhTSH expression. The results indicate that the amount of MCs in the culture and the cell concentration at the beginning of rhTSH synthesis phase were crucial parameters for improving the final rhTSH production. By cultivating the CHO-hTSH cells with an initial cell seeding of four cells/MC on 4 g/L of MCs with a repeated fed batch mode of operation at 40 rpm, 37 A degrees C, 20% DO, and pH 7.2 and starting the rhTSH synthesis phase with 3 x 10(6) cells/mL, we were able to supply the cultures with enough glucose, to maintain low levels of lactate, and to provide high percent (similar to 80%) of fully covered MCs for a long period (5 days) and attain a high cell concentration (similar to 9 x 10(5) cells/mL). The novelty of the present study is represented by the establishment of cell culture conditions allowing us to produce similar to 1.6 mg/L of rhTSH in an already suitable degree of purity. Batches of produced rhTSH were purified and showed biological activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A prenylated benzophenone, hyperibone A, was isolated from the hexane fraction of Brazilian propolis type 6. Its structure was determined by spectral analysis including 2D NMR. This compound exhibited cytotoxic activity against HeLa tumor cells (IC(50) = 0.1756 mu M), strong antimicrobial activity (MIC range-0.73-6.6 mu g/mL; MBC range-2.92-106 mu g/mL) against Streptococcus mutans, Streptococcus sobrinus, Streptococcus oralis, Staphylococcus aureus, and Actinomyces naeslundii, and the results of its cytotoxic and antimicrobial activities were considered good. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The propolis has potential to be a natural food additive However its application is limited because It is alcohol-soluble and has strong flavour Microencapsulation may be an alternative for reducing these problems The aim of this study was to encapsulate propolis extract by complex coacervation using isolated soy protein and pectin as encapsulant agents The coacervation was studied as a function of pH (5 0 4 5 4 0 and 3 5) and the concentration of encapsulants and core (2 5 and 5 0 g/100 mL) Samples obtained at pH 4 0 in both concentrations were lyophilized and analyzed for hygroscopicity encapsulation efficiency particle size morphology thermal behavior stability of phenolic and flavonoids during storage as well as antioxidant and antimicrobial activities It was possible to encapsulate propolis extract by complex coacervation and to obtain it in the form of powder alcohol-free stable with antioxidant property antimicrobial activity against Staphylococcus aureus and with the possibility of controlled release in foods (C) 2010 Elsevier Ltd All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chagas` disease, infection caused by the protozoan Trypanosoma cruzi, is an important, social and medical ailment in the Latin America. This disease is endemic in 21 countries, mostly Latin America countries, with more than 300,000 new cases every year and about 16-18 million infected people. Current therapy is not effective in the chronic phase of the disease. Thus, new and better drugs are urgently needed. In this sense, the in vitro activity of primaquine (PQ) was reported. Based on this, peptide prodrugs of primaquine containing dipeptides - lysine-arginine (LysArg), phenylalanine-alanine (PheAla) and phenylalanine-arginine (PheArg) -- as carriers, were designed to be selectively cleaved by cruzain, a specific cysteine protease of T. cruzi. The prodrugs have shown to be active against tripomastigote forms according to this order: LysArg-PQ> PheAla-PQ> PheArg-PQ. The molecular mechanism of action considered a probable nucleophilic attack of the catalytic residue of cruzain (Cys25) on the respective prodrug amide carbonyl carbon, releasing PQ. In order to test this hypothesis, molecular modeling studies were performed, physicochemical parameters and stereoelectronic features calculated by using the AM1 semi-empirical method suggest that the amide carbonyl carbon is favorable for cleavage, where the LysArg showed the most electronic reactive and sterically disposable, leading to the prodrug release and action. In addition, the docking study indicates the occurrence of specific interactions between prodrugs and the pockets S1 and S2 of cruzain through the dipeptides carriers, being the distance between cruzain Cys25 and the amide carbonyl group related to the biological activity of the prodrugs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PEGylation is a strategy that has been used to improve the biochemical properties of proteins and their physical and thermal stabilities. In this study, hen egg-white lysozyme (EC 3.2.1.17; LZ) was modified with methoxypolyethylene glycol-p-nitrophenyl carbonate (mPEG-pNP, MW 5000). This PEGylation of LZ produced conjugates that retained full enzyme activity with glycol chitosan, independent of degree of enzyme modification; its biological activity with the substrate Micrococcus lysodeikticus was altered according to its degree of modification. The conjugate obtained with a low degree of mPEG-pNP/NH(2) modification was studied by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF), demonstrating a spectral peak at m/z 19,988 Da with 77% of its original enzymatic activity. Spectroscopic studies of Fourier transform infrared (FIR) and circular dichroism (CD) did not show any relevant differences in protein structure between the native and conjugate LZ. Studies of the effects of pH and temperature on PEGylated LZ indicated that the conjugate was active over a broad pH range, stable at 50 degrees C, and demonstrated resistance to proteolytic degradation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, in vitro anti-T. cruzi activity assays of nifuroxazide (NX) analogues, such as 5-nitro-2-furfuryliden and 5-nitro-2-theniliden derivatives, were performed. A molecular modeling approach was also carried out to relate the lipophilicity potential ( LP) property and biological activity data. The majority of the NX derivatives showed increased anti-T. cruzi activity in comparison to the reference drug, benznidazole (BZN). Additionally, the 5-nitro-2-furfuryliden derivatives presented better pharmacological profile than the 5-nitro-2-theniliden analogues. The LP maps and corresponding ClogP values indicate that there is an optimum lipophilicity value, which must be observed in the design of new potential anti-T. cruzi agents. (c) 2009 Elsevier Ltd. All rights reserved.