24 resultados para Asymptotic behaviour, Bayesian methods, Mixture models, Overfitting, Posterior concentration
Resumo:
We present a sufficient condition for a zero of a function that arises typically as the characteristic equation of a linear functional differential equations of neutral type, to be simple and dominant. This knowledge is useful in order to derive the asymptotic behaviour of solutions of such equations. A simple characteristic equation, arisen from the study of delay equations with small delay, is analyzed in greater detail. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The purpose of this paper is to develop a Bayesian approach for log-Birnbaum-Saunders Student-t regression models under right-censored survival data. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the considered model. In order to attenuate the influence of the outlying observations on the parameter estimates, we present in this paper Birnbaum-Saunders models in which a Student-t distribution is assumed to explain the cumulative damage. Also, some discussions on the model selection to compare the fitted models are given and case deletion influence diagnostics are developed for the joint posterior distribution based on the Kullback-Leibler divergence. The developed procedures are illustrated with a real data set. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this article, we present a generalization of the Bayesian methodology introduced by Cepeda and Gamerman (2001) for modeling variance heterogeneity in normal regression models where we have orthogonality between mean and variance parameters to the general case considering both linear and highly nonlinear regression models. Under the Bayesian paradigm, we use MCMC methods to simulate samples for the joint posterior distribution. We illustrate this algorithm considering a simulated data set and also considering a real data set related to school attendance rate for children in Colombia. Finally, we present some extensions of the proposed MCMC algorithm.
Resumo:
Linear mixed models were developed to handle clustered data and have been a topic of increasing interest in statistics for the past 50 years. Generally. the normality (or symmetry) of the random effects is a common assumption in linear mixed models but it may, sometimes, be unrealistic, obscuring important features of among-subjects variation. In this article, we utilize skew-normal/independent distributions as a tool for robust modeling of linear mixed models under a Bayesian paradigm. The skew-normal/independent distributions is an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal distribution, skew-t, skew-slash and the skew-contaminated normal distributions as special cases, providing an appealing robust alternative to the routine use of symmetric distributions in this type of models. The methods developed are illustrated using a real data set from Framingham cholesterol study. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The main object of this paper is to discuss the Bayes estimation of the regression coefficients in the elliptically distributed simple regression model with measurement errors. The posterior distribution for the line parameters is obtained in a closed form, considering the following: the ratio of the error variances is known, informative prior distribution for the error variance, and non-informative prior distributions for the regression coefficients and for the incidental parameters. We proved that the posterior distribution of the regression coefficients has at most two real modes. Situations with a single mode are more likely than those with two modes, especially in large samples. The precision of the modal estimators is studied by deriving the Hessian matrix, which although complicated can be computed numerically. The posterior mean is estimated by using the Gibbs sampling algorithm and approximations by normal distributions. The results are applied to a real data set and connections with results in the literature are reported. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work presents a Bayesian semiparametric approach for dealing with regression models where the covariate is measured with error. Given that (1) the error normality assumption is very restrictive, and (2) assuming a specific elliptical distribution for errors (Student-t for example), may be somewhat presumptuous; there is need for more flexible methods, in terms of assuming only symmetry of errors (admitting unknown kurtosis). In this sense, the main advantage of this extended Bayesian approach is the possibility of considering generalizations of the elliptical family of models by using Dirichlet process priors in dependent and independent situations. Conditional posterior distributions are implemented, allowing the use of Markov Chain Monte Carlo (MCMC), to generate the posterior distributions. An interesting result shown is that the Dirichlet process prior is not updated in the case of the dependent elliptical model. Furthermore, an analysis of a real data set is reported to illustrate the usefulness of our approach, in dealing with outliers. Finally, semiparametric proposed models and parametric normal model are compared, graphically with the posterior distribution density of the coefficients. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We have considered a Bayesian approach for the nonlinear regression model by replacing the normal distribution on the error term by some skewed distributions, which account for both skewness and heavy tails or skewness alone. The type of data considered in this paper concerns repeated measurements taken in time on a set of individuals. Such multiple observations on the same individual generally produce serially correlated outcomes. Thus, additionally, our model does allow for a correlation between observations made from the same individual. We have illustrated the procedure using a data set to study the growth curves of a clinic measurement of a group of pregnant women from an obstetrics clinic in Santiago, Chile. Parameter estimation and prediction were carried out using appropriate posterior simulation schemes based in Markov Chain Monte Carlo methods. Besides the deviance information criterion (DIC) and the conditional predictive ordinate (CPO), we suggest the use of proper scoring rules based on the posterior predictive distribution for comparing models. For our data set, all these criteria chose the skew-t model as the best model for the errors. These DIC and CPO criteria are also validated, for the model proposed here, through a simulation study. As a conclusion of this study, the DIC criterion is not trustful for this kind of complex model.
Resumo:
In this article, we give an asymptotic formula of order n(-1/2), where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the parameters in exponencial family nonlinear models. We generalize the result by Cordeiro and Cordeiro ( 2001). The formula is given in matrix notation and is very suitable for computer implementation and to obtain closed form expressions for a great variety of models. Some special cases and two applications are discussed.
A robust Bayesian approach to null intercept measurement error model with application to dental data
Resumo:
Measurement error models often arise in epidemiological and clinical research. Usually, in this set up it is assumed that the latent variable has a normal distribution. However, the normality assumption may not be always correct. Skew-normal/independent distribution is a class of asymmetric thick-tailed distributions which includes the Skew-normal distribution as a special case. In this paper, we explore the use of skew-normal/independent distribution as a robust alternative to null intercept measurement error model under a Bayesian paradigm. We assume that the random errors and the unobserved value of the covariate (latent variable) follows jointly a skew-normal/independent distribution, providing an appealing robust alternative to the routine use of symmetric normal distribution in this type of model. Specific distributions examined include univariate and multivariate versions of the skew-normal distribution, the skew-t distributions, the skew-slash distributions and the skew contaminated normal distributions. The methods developed is illustrated using a real data set from a dental clinical trial. (C) 2008 Elsevier B.V. All rights reserved.