30 resultados para Activated mixtures
Resumo:
Scale mixtures of the skew-normal (SMSN) distribution is a class of asymmetric thick-tailed distributions that includes the skew-normal (SN) distribution as a special case. The main advantage of these classes of distributions is that they are easy to simulate and have a nice hierarchical representation facilitating easy implementation of the expectation-maximization algorithm for the maximum-likelihood estimation. In this paper, we assume an SMSN distribution for the unobserved value of the covariates and a symmetric scale mixtures of the normal distribution for the error term of the model. This provides a robust alternative to parameter estimation in multivariate measurement error models. Specific distributions examined include univariate and multivariate versions of the SN, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.
Resumo:
We present a Bayesian approach for modeling heterogeneous data and estimate multimodal densities using mixtures of Skew Student-t-Normal distributions [Gomez, H.W., Venegas, O., Bolfarine, H., 2007. Skew-symmetric distributions generated by the distribution function of the normal distribution. Environmetrics 18, 395-407]. A stochastic representation that is useful for implementing a MCMC-type algorithm and results about existence of posterior moments are obtained. Marginal likelihood approximations are obtained, in order to compare mixture models with different number of component densities. Data sets concerning the Gross Domestic Product per capita (Human Development Report) and body mass index (National Health and Nutrition Examination Survey), previously studied in the related literature, are analyzed. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The opportunistic pathogen Pseudomonas aeruginosa PA14 possesses four fimbrial cup clusters, which may confer the ability to adapt to different environments. cupD lies in the pathogenicity island PAPI-1 next to genes coding for a putative phosphorelay system composed of the hybrid histidine kinase RcsC and the response regulator RcsB. The main focus of this work was the regulation of cupD at the mRNA level. It was found that the HN-S-like protein MvaT does not exert a strong influence on cupD transcript levels, as it does for cupA. cupD transcription is higher in cultures grown at 28 degrees C, which agrees with a cupD mutant presenting attenuated virulence only in a plant model, but not in a mouse model of infection. Whereas an rcsC in-frame deletion mutant presented higher levels of cupD mRNA, rcsB deletion had the opposite effect. Accordingly, overexpression of RcsB increased the levels of cupD transcription, and promoted biofilm formation and the appearance of fimbriae. A single transcription start site was determined for cupD and transcription from this site was induced by RcsB. A motif similar to the enterobacterial RcsB/RcsA-binding site was detected adjacent to the -35 region, suggesting that this could be the RcsB-binding site. Comparison of P. aeruginosa and Escherichia coli Rcs may provide insights into how similar systems can be used by different bacteria to control gene expression and to adapt to various environmental conditions.
Resumo:
The increased surface area of copper electrodes upon applying a suitable potential protocol was characterized by atomic force microscopy images. Scanning electrochemical microscopy was used to demonstrate the enhanced reactivity of the generated surface. The modified electrode showed excellent catalytic activity towards nitrite reduction in acidic medium (pH 2). This new platform was used in the development of a fast and simple voltammetric method for nitrite determination. Commercial and rainwater spiked samples were analyzed and the data showed an excellent agreement with those obtained with a reference spectrophotometric method (Griess reaction) at a confidence level of 95% (Student`s t-test).
Resumo:
The addition of lithium salts to ionic liquids causes an increase in viscosity and a decrease in ionic mobility that hinders their possible application as an alternative solvent in lithium ion batteries. Optically heterodyne-detected optical Kerr effect spectroscopy was used to study the change in dynamics, principally orientational relaxation, caused by the addition of lithium bis(trifluoromethylsulfonyl)imide to the ionic liquid 1-buty1-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Over the time scales studied (1 ps-16 ns) for the pure ionic liquid, two temperature-independent power laws were observed: the intermediate power law (1 ps to similar to 1 ns), followed by the von Schweidler power law. The von Schweidler power law is followed by the final complete exponential relaxation, which is highly sensitive to temperature. The lithium salt concentration, however, was found to affect both power laws, and a discontinuity could be found in the trend observed for the intermediate power law when the concentration (mole fraction) of lithium salt is close to chi(LiTf(2)N) = 0.2. A mode coupling theory (MCT) schematic model was also used to fit the data for both the pure ionic liquid and the different salt concentration mixtures. It was found that dynamics in both types of liquids are described very well by MCT.
Resumo:
We have demonstrated previously that the complex bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl)pyridine-N,N`]copper(II), named [Cu(isaepy)(2)], induces AMPK (AMP-activated protein kinase)-dependent/p53-mediated apoptosis in tumour cells by targeting mitochondria. In the present study, we found that p38(MAPK) (p38 mitogen-activated protein kinase) is the molecular link in the phosphorylation cascade connecting AMPK to p53. Transfection of SH-SY5Y cells with a dominant-negative mutant of AMPK resulted in a decrease in apoptosis and a significant reduction in phospho-active p38(MAPK) and p53. Similarly, reverse genetics of p38(MAPK) yielded a reduction in p53 and a decrease in the extent of apoptosis, confirming an exclusive hierarchy of activation that proceeds via AMPK/p38(MAPK)/p53. Fuel supplies counteracted [Cu(isaepy)(2)]-induced apoptosis and AMPK/p38(MAPK)/p53 activation, with glucose being the most effective, suggesting a role for energetic imbalance in [Cu(isaepy)(2)] toxicity. Co-administration of 3BrPA (3-bromopyruvate), a well-known inhibitor of glycolysis, and succinate dehydrogenase, enhanced apoptosis and AMPK/p38(MAPK)/p53 signalling pathway activation. Under these conditions, no toxic effect was observed in SOD (superoxide dismutase)-overexpressing SH-SY5Y cells or in PCNs (primary cortical neurons), which are, conversely, sensitized to the combined treatment with [Cu(isaepy)(2)] and 3BrPA only if grown in low-glucose medium or incubated with the glucose-6-phosphate dehydrogenase inhibitor dehydroepiandrosterone. Overall, the results suggest that NADPH deriving from the pentose phosphate pathway contributes to PCN resistance to [Cu(isaepy)(2)] toxicity and propose its employment in combination with 3BrPA as possible tool for cancer treatment.
Resumo:
The intermediacy of the geminate base proton pair (A*center dot center dot center dot H(+)) in excited-state proton-transfer (ESPT) reactions (two-step mechanism) has been investigated employing the synthetic flavylium salt 7-hydroxy-4-methyl-flavylium chloride (HMF). In aqueous solution, the ESPT mechanism involves solely the excited acid AH* and base A* forms of HMF as indicated by the fluorescence spectra and double-exponential fluorescence decays (two species, two decay times). However, upon addition of either 1,4-dioxane or 1,2-propylene glycol, the decays become triple-exponential with a term consistent with the presence of the geminate base proton pair A*center dot center dot center dot H(+). The geminate pair becomes detectable because of the increase in the recombination rate constant, k(rec), of (A*center dot center dot center dot H(+)) with increasing the mole fraction of added organic cosolvent. Because the two-step ESPT mechanism splits the intrinsic prototropic reaction rates (deprotonation of AH(+)*, k(d), and recombination, k(rec) of A*center dot center dot center dot H(+)) from the diffusion controlled rates (dissociation, k(diss) and formation, k(diff)[H(+)], of A*center dot center dot center dot H+), the experimental detection of the geminate pair provides a wealth of information on the proton-transfer reaction (k(d) and k(rec)) as well as on proton diffusion/migration (k(diss) and k(diff)).
Resumo:
We previously demonstrated that Bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl) pyridine-N, N`] copper(II) [Cu(isaepy)(2)] was an efficient inducer of the apoptotic mitochondrial pathway. Here, we deeply dissect the mechanisms underlying the ability of Cu(isaepy)(2) to cause mitochondriotoxicity. In particular, we demonstrate that Cu(isaepy)(2) increases NADH-dependent oxygen consumption of isolated mitochondria and that this phenomenon is associated with oxy-radical production and insensitive to adenosine diphosphate. These data indicate that Cu(isaepy)(2) behaves as an uncoupler and this property is also confirmed in cell systems. Particularly, SH-SY5Y cells show: (i) an early loss of mitochondrial transmembrane potential; (ii) a decrease in the expression levels of respiratory complex components and (iii) a significant adenosine triphosphate (ATP) decrement. The causative energetic impairment mediated by Cu(isaepy)(2) in apoptosis is confirmed by experiments carried out with rho(0) cells, or by glucose supplementation, where cell death is significantly inhibited. Moreover, gastric and cervix carcinoma AGS and HeLa cells, which rely most of their ATP production on oxidative phosphorylation, show a marked sensitivity toward Cu(isaepy)(2). Adenosine monophosphate-activated protein kinase (AMPK), which is activated by events increasing the adenosine monophosphate: ATP ratio, is deeply involved in the apoptotic process because the overexpression of its dominant/negative form completely abolishes cell death. Upon glucose supplementation, AMPK is not activated, confirming its role as fuel-sensing enzyme that positively responds to Cu(isaepy)(2)-mediated energetic impairment by committing cells to apoptosis. Overall, data obtained indicate that Cu(isaepy)(2) behaves as delocalized lipophilic cation and induces mitochondrial-sited reactive oxygen species production. This event results in mitochondrial dysfunction and ATP decrease, which in turn triggers AMPK-dependent apoptosis.
Resumo:
Thin films of mixtures containing carboxymethylcellulose acetate butyrate (CMCAB) and carbohydrate based surfactant, namely, sorbitan monopalmitate (Span 40) or poly(oxyethylene) sorbitan monopalmitate (Tween 40) were spin-coated onto silicon wafers. The effect of surfactant concentration on resulting film morphology and surface toughness Was Studied by atomic force microscopy (AFM). Upon increasing the concentration of Span 40 in the mixture, films became rougher and more heterogeneous, indicating surface enrichment by Span 40 molecules. In the case of mixtures composed by CMCAB and Tween 40, the increase of Tween 40 in the mixture led to smoother and more homogeneous films, indicating compatibility between both components. Differential scanning calorimetry (DSC) revealed that Span 40 and Tween 40 act as plasticizers for CMCAB, leading to dramatic reduction of glass transition temperature of CMCAB, namely, Delta T(g) = -158 degrees C and Delta T(g)=-179 degrees C. respectively. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work, the surface-enhanced Raman scattering (SERS) spectra of pyridine (py) on thin films of Co and Ni electrodeposited on an Ag electrode activated by oxidation-reduction cycles (ORC) are presented. The SERS spectra from the thin films were compared to those of py on activated bare transition metal electrodes. It was verified that the SERS spectra of py on 3 monolayers (ML)-thick films of Ni and Co presented only bands assignable to the py adsorbed on transition metal surfaces. It was also observed that even for 50 ML-thick transition metal films, the py SERS intensity was ca. 40% of the intensity from the 3 ML-thick films. The relative intensities of the SERS bands depended on the thickness of the films, and for films thicker than 7 ML for Co and 9 ML for Ni they were very similar to those of the bare transition metal electrodes. The transition metal thin films over Ag activated electrodes presented SERS intensities 3 orders of magnitude higher than the ones from bare transition metal electrodes. These films are more suitable to study the adsorption of low Raman cross-section molecules than are ORC-activated transition metal electrodes.
Resumo:
Alkanethiols, selenols and tellurols are generated in situ by reaction of elemental sulfur, selenium and tellurium with commercial alkyllithiums, followed by reaction with deoxygenated water. The alkanechalcogenols react in situ with activated ole. ns in a Michael- type addition reaction. (c) 2008 Elsevier B. V. All rights reserved.
Resumo:
We have employed UV-vis spectroscopy in order to investigate details of the solvation of six solvatochromic indicators, hereafter designated as ""probes"", namely, 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl) phenolate (RB); 4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePM; 1-methylquinolinium-8-olate, QB; 2-bromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr, 2,6-dichloro-4-(2,4,6-triphenylpyridinium-1-yl) phenolate (WB); and 2,6-dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr,, respectively. These can be divided into three pairs, each includes two probes of similar pK(a) in water and different lipophilicity. Solvation has been studied in binary mixtures, BMs, of water, W, with 12 protic organic solvents, S, including mono- and bifunctional alcohols (2-alkoxyethanoles, unsaturated and chlorinated alcohols). Each medium was treated as a mixture of S, W, and a complex solvent, S-W, formed by hydrogen bonding. Values of lambda(max) (of the probe intramolecular charge transfer) were converted into empirical polarity scales, E(T)(probe) in kcal/mol, whose values were correlated with the effective mole fraction of water in the medium, chi w(effective). This correlation furnished three equilibrium constants for the exchange of solvents in the probe solvation shell; phi(W/S) (W substitutes S): phi(S-W/W) (S-W substitutes W), and phi(S-W/S) (S-W substitutes S), respectively. The values of these constants depend on the physicochemical properties of the probe and the medium. We tested, for the first time, the applicability of a new solvation free energy relationship: phi = constant + a alpha(BM) + b beta(BM) + s(pi*(BM) + d delta) + p log P(BM), where a, b, s, and p are regression coefficients alpha(BM), beta(BM), and pi*(BM) are solvatochromic parameters of the BM, delta is a correction term for pi*, and log P is an empirical scale of lipophilicity. Correlations were carried out with two-, three-, and four-medium descriptors. In all cases, three descriptors gave satisfactory correlations; use of four parameters gave only a marginal increase of the goodness of fit. For phi(W/S), the most important descriptor was found to be the lipophilicity of the medium; for phi(S-W/W) and phi(S-W/S), solvent basicity is either statistically relevant or is the most important descriptor. These responses are different from those of E(T)(probe) of many solvatochromic indicators in pure solvents, where the importance of solvent basicity is usually marginal, and can be neglected.
Resumo:
Co-solvents can minimize two of the major problems associated with the use of ionic liquids (ILs) as solvents for homogeneous derivatization of cellulose: high viscosity and limited miscibility with non-polar reagents or reaction products. Thus, the effects of 18 solvents and 3 binary solvent mixtures on cellulose solutions in three ILs were systematically studied with respect to the solution phase behavior. The applicable limits of these mixtures were evaluated and general guidelines for the use of co-solvents in cellulose chemistry could be advanced: Appropriate co-solvents should have EN T values (normalized empirical polarity) > 0.3, very low ``acidity`` (alpha < 0.5), and relatively high ""basicity`` (beta >= 0.4). Moreover, novel promising co-solvents and binary co-solvent mixtures were identified.
Resumo:
The second-order rate constants of thiolysis by n-heptanethiol on 4-nitro-N-n-butyl-1,8-naphthalimide (4NBN) are strongly affected by the water-methanol binary mixture composition reaching its maximum at around 50% mole fraction. In parallel solvent effects on 4NBN absorption molar extinction coefficient also shows a maximum at this composition region. From the spectroscopic study of reactant and product and the known H-bond capacity of the mixture a rationalization that involves specific solvent H-donor interaction with the nitro group is proposed to explain the kinetic data. Present findings also show a convenient methodology to obtain strongly fluorescent imides, valuable for peptide and analogs labeling as well as for thio-naphthalimide derivatives preparations. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
The degradation of phenol by a hybrid process (activated sludge + photocatalysis) in a high salinity medium (50 g L-1 of chloride) has been investigated. The sludge used from a municipal wastewater facility was adapted to the high salt concentrations prior to use. The photocatalytic conditions were optimized by means of a factorial experimental design. TiO2 P25 from Degussa was used as the photocatalyst. The initial phenol concentration was approximately 200 mg L-1 and complete removal of phenol and a mineralization degree above 98% were achieved within 25 h of treatment (24 h of biological treatment and I h of photocatalysis). From HPLC analyses, five hydroxylated intermediates formed during oxidation have been identified. The main ones were catechol and hydroquinone, followed by 1,2,4-benzenetriol, 2-hydroxy- 1,4-benzoquinone, and pyrogallol, in this order. No formation of organochlorine compounds was observed. Therefore, the proposed hybrid process showed itself to be suited to treat phenol in the presence of high contents of salt. (c) 2007 Elsevier B.V. All rights reserved.