314 resultados para GaN based quantum dots
Resumo:
Glyoxalated soy flour adhesives for wood particleboard added with a much smaller proportion of glyoxalated lignin or tannin and without any addition of either formaldehyde or formaldehyde-based resin are shown to yield results satisfying the relevant standard specifications for interior wood boards. Adhesive resin formulations in which the total content of natural material is either 70 or 80% of the total resin solids content gave good results. The resins comprising 70% by weight of natural material can be used in a much lower proportion on wood chips and can afford pressing times fast enough to be significant under industrial panel pressing conditions. The best formulation of all the ones tried was the one based on glyoxalated precooked soy flour (SG), to which a condensed tannin was added in water solution and a polymeric isocyanate (pMDI), where the proportions of the components SG/T/pMDI was 54/16/30 by weight. (C) 2008 Wiley Periodicals, Inc.
Resumo:
Cheese whey (CW) and deproteinised cheese whey (DCW) were investigated for their suitability as novel substrates for the production of kefir-like beverages. Lactose consumption, ethanol production, as well as organic acids and volatile compounds formation, were determined during CW and DCW fermentation by kefir grains and compared with values obtained during the production of traditional milk kefir. The results showed that kefir grains were able to utilise lactose from CW and DCW and produce similar amounts of ethanol (7.8-8.3 g/l), lactic acid (5.0 g/l) and acetic acid (0.7 g/l) to those obtained during milk fermentation. In addition, the concentration of higher alcohols (2-methyl-1-butanol, 3-methyl-1-butanol, 1-hexanol, 2-methyl-1-propanol, and 1-propanol), ester (ethyl acetate) and aldehyde (acetaldehyde) in cheese whey-based kefir and milk kefir beverages were also produced in similar amounts. Cheese whey and deproteinised cheese whey may therefore serve as substrates for the production of kefir-like beverages similar to milk kefir. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
P>The aim of the present work was to evaluate the use of the kefir grains as a starter culture for tradicional milk kefir beverage and for cheese whey-based beverages production. Fermentation was performed by inoculating kefir grains in milk (ML), cheese whey (CW) and deproteinised cheese whey (DCW). Erlenmeyers containing kefir grains and different substrates were statically incubated for 72 h at 25 degrees C. Lactose, ethanol, lactic acid, acetic acid, acetaldehyde, ethyl acetate, isoamyl alcohol, isobutanol, 1-propanol, isopentyl alcohol and 1-hexanol were identified and quantified by high-performance liquid chromatography and GC-FID. The results showed that kefir grains were able to utilise lactose in 60 h from ML and 72 h from CW and DCW and produce similar amounts of ethanol (similar to 12 g L-1), lactic acid (similar to 6 g L-1) and acetic acid (similar to 1.5 g L-1) to those obtained during milk fermentation. Based on the chemical characteristics and acceptance in the sensory analysis, the kefir grains showed potential to be used for developing cheese whey-based beverages.
Resumo:
The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe(3+)-reductants. Phenolates were the major compounds with Fe(3+)-reducing activity in both fungi and displayed Fe(3+)-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe(3+) and H(2)O(2) (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum-a model brown rot fungus-other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.
Resumo:
Support for interoperability and interchangeability of software components which are part of a fieldbus automation system relies on the definition of open architectures, most of them involving proprietary technologies. Concurrently, standard, open and non-proprietary technologies, such as XML, SOAP, Web Services and the like, have greatly evolved and been diffused in the computing area. This article presents a FOUNDATION fieldbus (TM) device description technology named Open-EDD, based on XML and other related technologies (XLST, DOM using Xerces implementation, OO, XMIL Schema), proposing an open and nonproprietary alternative to the EDD (Electronic Device Description). This initial proposal includes defining Open-EDDML as the programming language of the technology in the FOUNDATION fieldbus (TM) protocol, implementing a compiler and a parser, and finally, integrating and testing the new technology using field devices and a commercial fieldbus configurator. This study attests that this new technology is feasible and can be applied to other configurators or HMI applications used in fieldbus automation systems. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes a three-stage offline approach to detect, identify, and correct series and shunt branch parameter errors. In Stage 1 the branches suspected of having parameter errors are identified through an Identification Index (II). The II of a branch is the ratio between the number of measurements adjacent to that branch, whose normalized residuals are higher than a specified threshold value, and the total number of measurements adjacent to that branch. Using several measurement snapshots, in Stage 2 the suspicious parameters are estimated, in a simultaneous multiple-state-and-parameter estimation, via an augmented state and parameter estimator which increases the V - theta state vector for the inclusion of suspicious parameters. Stage 3 enables the validation of the estimation obtained in Stage 2, and is performed via a conventional weighted least squares estimator. Several simulation results (with IEEE bus systems) have demonstrated the reliability of the proposed approach to deal with single and multiple parameter errors in adjacent and non-adjacent branches, as well as in parallel transmission lines with series compensation. Finally the proposed approach is confirmed on tests performed on the Hydro-Quebec TransEnergie network.
Resumo:
The power transformer is a piece of electrical equipment that needs continuous monitoring and fast protection since it is very expensive and an essential element for a power system to perform effectively. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can affect the protection behavior and the power system stability. This paper proposes the development of a new algorithm to improve the differential protection performance by using fuzzy logic and Clarke`s transform. An electrical power system was modeled using Alternative Transients Program (ATP) software to obtain the operational conditions and fault situations needed to test the algorithm developed. The results were compared to a commercial relay for validation, showing the advantages of the new method.
Resumo:
This paper presents a compact embedded fuzzy system for three-phase induction-motor scalar speed control. The control strategy consists in keeping constant the voltage-frequency ratio of the induction-motor supply source. A fuzzy-control system is built on a digital signal processor, which uses speed error and speed-error variation to change both the fundamental voltage amplitude and frequency of a sinusoidal pulsewidth modulation inverter. An alternative optimized method for embedded fuzzy-system design is also proposed. The controller performance, in relation to reference and load-torque variations, is evaluated by experimental results. A comparative analysis with conventional proportional-integral controller is also achieved.
Resumo:
We proposed a connection admission control (CAC) to monitor the traffic in a multi-rate WDM optical network. The CAC searches for the shortest path connecting source and destination nodes, assigns wavelengths with enough bandwidth to serve the requests, supervises the traffic in the most required nodes, and if needed activates a reserved wavelength to release bandwidth according to traffic demand. We used a scale-free network topology, which includes highly connected nodes ( hubs), to enhance the monitoring procedure. Numerical results obtained from computational simulations show improved network performance evaluated in terms of blocking probability.
Resumo:
This paper presents a controller design method for fuzzy dynamic systems based on piecewise Lyapunov functions with constraints on the closed-loop pole location. The main idea is to use switched controllers to locate the poles of the system to obtain a satisfactory transient response. It is shown that the global fuzzy system satisfies the requirements for the design and that the control law can be obtained by solving a set of linear matrix inequalities, which can be efficiently solved with commercially available softwares. An example is given to illustrate the application of the proposed method. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
This research presents a method for frequency estimation in power systems using an adaptive filter based on the Least Mean Square Algorithm (LMS). In order to analyze a power system, three-phase voltages were converted into a complex signal applying the alpha beta-transform and the results were used in an adaptive filtering algorithm. Although the use of the complex LMS algorithm is described in the literature, this paper deals with some practical aspects of the algorithm implementation. In order to reduce computing time, a coefficient generator was implemented. For the algorithm validation, a computing simulation of a power system was carried Out using the ATP software. Many different situations were Simulated for the performance analysis of the proposed methodology. The results were compared to a commercial relay for validation, showing the advantages of the new method. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A technique for improving the performance of an OSNR monitor based on a polarisation nulling method with the downhill simplex algorithm is demonstrated. Establishing a compromise between accuracy and acquisition time, the monitor has been calibrated to 0.72 dB/390 ms and 0.98 dB/320 ms, over a range of nearly 21 dB. As far as is known, these are the best values achieved with such an OSNR monitoring method.
Resumo:
This work presents the study and development of a combined fault location scheme for three-terminal transmission lines using wavelet transforms (WTs). The methodology is based on the low- and high-frequency components of the transient signals originated from fault situations registered in the terminals of a system. By processing these signals and using the WT, it is possible to determine the time of travelling waves of voltages and/or currents from the fault point to the terminals, as well as estimate the fundamental frequency components. A new approach presents a reliable and accurate fault location scheme combining some different solutions. The main idea is to have a decision routine in order to select which method should be used in each situation presented to the algorithm. The combined algorithm was tested for different fault conditions by simulations using the ATP (Alternative Transients Program) software. The results obtained are promising and demonstrate a highly satisfactory degree of accuracy and reliability of the proposed method.
Resumo:
A phase-only encryption/decryption scheme with the readout based on the zeroth-order phase-contrast technique (ZOPCT), without the use of a phase-changing plate on the Fourier plane of an optical system based on the 4f optical correlator, is proposed. The encryption of a gray-level image is achieved by multiplying the phase distribution obtained directly from the gray-level image by a random phase distribution. The robustness of the encoding is assured by the nonlinearity intrinsic to the proposed phase-contrast method and the random phase distribution used in the encryption process. The experimental system has been implemented with liquid-crystal spatial modulators to generate phase-encrypted masks and a decrypting key. The advantage of this method is the easy scheme to recover the gray-level information from the decrypted phase-only mask applying the ZOPCT. An analysis of this decryption method was performed against brute force attacks. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3223629]
Resumo:
A secure communication system based on the error-feedback synchronization of the electronic model of the particle-in-a-box system is proposed. This circuit allows a robust and simple electronic emulation of the mechanical behavior of the collisions of a particle inside a box, exhibiting rich chaotic behavior. The required nonlinearity to emulate the box walls is implemented in a simple way when compared with other analog electronic chaotic circuits. A master/slave synchronization of two circuits exhibiting a rich chaotic behavior demonstrates the potentiality of this system to secure communication. In this system, binary data stream information modulates the bifurcation parameter of the particle-in-a-box electronic circuit in the transmitter. In the receiver circuit, this parameter is estimated using Pecora-Carroll synchronization and error-feedback synchronization. The performance of the demodulation process is verified through the eye pattern technique applied on the recovered bit stream. During the demodulation process, the error-feedback synchronization presented better performance compared with the Pecora-Carroll synchronization. The application of the particle-in-a-box electronic circuit in a secure communication system is demonstrated.