383 resultados para S-phenyl-mercapturic acid determination
Resumo:
A new procedure for spectrofluorimetric determination of free and total glycerol in biodiesel samples is presented. It is based on the oxidation of glycerol by periodate, forming formaldehyde, which reacts with acetylacetone, producing the luminescent 3,5-diacetyl-1,4-dihydrolutidine. A flow system with solenoid micro-pumps is proposed for solution handling. Free glycerol was extracted off-line from biodiesel samples with water, and total glycerol was converted to free glycerol by saponification with sodium ethylate under sonication. For free glycerol, a linear response was observed from 5 to 70 mg L(-1) with a detection limit of 0.5 mg L(-1), which corresponds to 2 mg kg(-1) in biodiesel. The coefficient of variation was 0.9% (20 mg L(-1), n = 10). For total glycerol, samples were diluted on-line, and the linear response range was 25 to 300 mg L(-1). The detection limit was 1.4 mg L(-1) (2.8 mg kg(-1) in biodiesel) with a coefficient of variation of 1.4% (200 mg L(-1), n = 10). The sampling rate was ca. 35 samples h(-1) and the procedure was applied to determination of free and total glycerol in biodiesel samples from soybean, cottonseed, and castor beans.
Resumo:
Cadmium is known to be a toxic agent that accumulates in the living organisms and present high toxicity potential over lifetime. Efforts towards the development of methods for microanalysis of environmental samples, including the determination of this element by graphite furnace atomic absorption spectrometry (GFAAS). inductively coupled plasma optical emission spectrometry (ICP OES), and inductively coupled plasma-mass spectrometry (ICP-MS) techniques, have been increasing. Laser induced breakdown spectroscopy (UBS) is an emerging technique dedicated to microanalysis and there is a lack of information dealing with the determination of cadmium. The aim of this work is to demonstrate the feasibility of LIBS for cadmium detection in soils. The experimental setup was designed using a laser Q-switched (Nd:YAG, 10 Hz, lambda = 1064 nm) and the emission signals were collimated by lenses into an optical fiber Coupled to a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Samples were cryogenically ground and thereafter pelletized before LIBS analysis. Best results were achieved by exploring a test portion (i.e. sampling spots) with larger surface area, which contributes to diminish the uncertainty due to element specific microheterogeneity. Calibration curves for cadmium determination were achieved using certified reference materials. The metrological figures of merit indicate that LIBS can be recommended for screening of cadmium contamination in soils. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A fully automated multipumping flow system (MPFS) using water-soluble CdTe quantum dots (QD) as sensitizers is proposed for the chemiluminometric determination of the anti-diabetic drugs gliclazide and glipizide in pharmaceutical formulations. The nanocrystals acted as enhancers of the weak CL emission produced upon oxidation of sulphite by Ce(IV) in acidic medium, thus improving sensitivity and expanding the dynamical analytical concentration range. By interacting with the QD, the two analytes prevented their sensitizing effect yielding a chemiluminescence quenching of the Ce(IV)-SO(3)(2-)CdTe QD system. The pulsed flow inherent to MPFS assured a fast and efficient mixing of all solutions inside the flow cell, circumventing the need for a reaction coil and facilitating the monitoring of the short-lived generated chemiluminescent species. QD crystal size, concentration and spectral region for measurement were investigated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the current work a Green Analytical Chemistry (GAC) procedure for photometric determination of orthophosphate in river water at mu g L-1 concentration level is described. The flow system module and the LED-based photometer were assembled together to constitute a compact unit in order to allow that a flow cell with optical path-length of 100mm was coupled to them. The photometric procedure based on the molybdenum blue method was implemented employing the multicommuted flow injection analysis approach, which provided facilities to allow reduction of reagent consumption and as well as waste generation. Aiming to prove the usefulness of the system, orthophosphate in river and tap waters was determined. Accuracy was ascertained by spiking samples with orthophosphate solution yielding recoveries ranging from 96% up to 107%. Other profitable features such as a wide linear response range between 10 to 800 mu g L-1 [image omitted]; a detection limit (3 sigma criterion) of 2.4 mu g L-1 [image omitted]; a relative standard deviation (n=7) of 2% using a typical water sample with concentration of 120 mu g L-1 [image omitted]; reagent consumption of 3.0mg ammonium molybdate, 0.3mg hydrazine sulfate, and 0.03mg stannous chloride per determination; a waste generation of 2.4mL per determination; and a sampling throughput of 20 determination per hours were also achieved.
Resumo:
Laminar and pulsed flows typical of multi-commuted and multi-pumping flow systems, were evaluated in relation to analytical procedures carried out at high temperatures. As application, the spectrophotometric determination of total reducing sugars (TRS, hydrolyzed sucrose plus reducing sugars) in sugar-cane juice and molasses was selected. The method involves in-line hydrolysis of sucrose and alkaline degradation of the reducing sugars at about 98 degrees C. Better results were obtained with pulsed flows, due to the efficient radial mass transport inherent to the multi-pumping flow system. The proposed system presents favorable characteristics of ruggedness, analytical precision (r.s.d. < 0.013 for typical samples), stability (no measurable baseline drift during 4-h working periods), linearity of the analytical curve (r > 0.992, n = 5, 0.05-0.50% w/v TRS) and sampling rate (65 h(-1)). Results are in agreement with ion chromatography.
Resumo:
Selenium detection limits of INAA are normally above its concentration in most biological materials. Gamma-gamma coincidence methodology can be used to improve the detection limits and uncertainties in the determination of selenium. Here, some edible parts of plants were measured using a HPGe detector equipped with a NaI(Tl) active shielding, producing spectra both in normal and coincidence modes. The results presented the reduction of the detection limits of selenium by a factor of 2 to 3 times and improvement in the uncertainty of up to 2 times.
Resumo:
Liquid-liquid microextraction without phase segmentation was implemented in a multicommuted flow system for determination of the anti-hypertensive diltiazem. The procedure was based on ion pair formation between the drug and the dye bromothymol blue at pH 3.5. The detection was performed without phase separation in a glass tube coupled to a fiber-optics spectrophotometer. The total volume of chloroform was reduced to 50 mu L in comparison with 10 mL consumed in batch. A linear response was observed between 9 and 120 mu mol L(-1), with a detection limit of 0.9 mu mol L(-1) (99.7% confidence level). The coefficient of variation (n = 10), sampling rate and extraction efficiency were estimated as 0.6%, 78 determinations per hour and 61%, respectively. About 30 mu g of bromothymol blue was consumed and the waste volume was 380 mu L per determination. The results for pharmaceutical samples agreed with those obtained by the reference procedure at the 95% confidence level. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Techniques that employ (15)N have proved to be an important tool in many areas of the agronomic and biomedical sciences. Nevertheless, their use is limited by methodological difficulties and by the price of compounds in the international market. Nitric compounds ((15)NO(3)(-)) have attracted the interest of researchers. However, these compounds are not currently produced in Brazil. Thus, in the present work H(15)NO(3) was obtained from the oxidation of anhydrous (15)NH(3). The method we used differs from the industrial process in that the absorption tower is replaced with a polytetrafluoroethylene-lined, stainless-steel hydration reactor. The process output was evaluated based on the following parameters: reaction temperature; ratio of reagents; pressure and flow of (15)NH(3(g)) through the catalyst (Pt/Rh). The results showed that, at the best conditions (500 degrees C; 50% excess O(2); 0.4 MPa; and 3.39 g. min(-1) of (15)NH(3)), a conversion percentage (N-(15)NH(3) to N-(15)NO(3)(-)) of 62.2%, an overall nitrogen balance (N-(15)NH(3) + N-(15)NO(3)(-)) of 86.8%, and purity higher than 99% could be obtained.
Resumo:
An improved flow-based procedure is proposed for turbidimetric sulphate determination in waters. The flow system was designed with solenoid micro-pumps in order to improve mixing conditions and minimize reagent consumption as well as waste generation. Stable baselines were observed in view of the pulsed flow characteristic of the systems designed with solenoid micro-pumps, thus making the use of washing solutions unnecessary. The nucleation process was improved by stopping the flow prior to the measurement, thus avoiding the need of sulphate addition. When a 1-cm optical path flow cell was employed, linear response was achieved within 20-200 mg L(-1), described by the equation S = -0.0767 + 0.00438C (mg L(-1)), r = 0.999. The detection limit was estimated as 3 mg L(-1) at the 99.7% confidence level and the coefficient of variation was 2.4% (n = 20). The sampling rate was estimated as 33 determinations per hour. A long pathlength (100-cm) flow cell based on a liquid core waveguide was exploited to increase sensitivity in turbidimetry. Baseline drifts were avoided by a periodical washing step with EDTA in alkaline medium. Linear response was observed within 7-16 mg L(-1), described by the equation S = -0.865 + 0.132C (mg L(-1)), r = 0.999. The detection limit was estimated as 150 mu g L(-1) at the 99.7% confidence level and the coefficient of variation was 3.0% (n = 20). The sampling rate was estimated as 25 determinations per hour. The results obtained for freshwater and rain water samples were in agreement with those achieved by batch turbidimetry at the 95% confidence level. (C) 2008 Elsevier B.V All rights reserved.
Resumo:
A flow system designed with solenoid micro-pumps is introduced for spectrophotometric determination of total tannins based on the Folin- Denis reaction. The procedure minimizes the main drawbacks related to the AOAC batch procedure, i.e. interferences from reducing species in the samples, high reagent consumption and waste generation, and low sampling rate. Linear response was observed for tannic acid concentrations in the range 2-100 mg L-1, with a detection limit (99.7% confidence level) of 0.3 mg L-1. The sampling rate and coefficient of variation (n = 10) were estimated as 75 measurements per hour and 1.1%, respectively. Results of determination of total tannin in tea, beer and wine samples were in agreement with those achieved by the batch reference procedure at the 95% confidence level. In comparison to the batch procedure, the reagent consumption and effluent generation were 83 and 60-fold lower, respectively.
Resumo:
Salbutamol is a bronchodilator whose use is restricted due to its anabolic effects. A flow-based procedure for salbutamol determination based on the inhibition of chemiluminescence of the luminol/hypochlorite system was developed. A flow cell constructed with a liquid-core waveguide was employed to constrain the emitted radiation, minimizing losses during transport to detector. Linear response was observed within 2.5 x 10(-6) and 1.0 x 10(-5) mol L-1 with a detection limit estimated as 1 x 10(-7) mol L-1 at the 99.7% confidence level. The coefficient of variation (n = 20), sampling rate, and luminol consumption per determination were estimated as 2.8%, 164 determinations h(-1), and 50 mu g, respectively. Results for pharmaceutical samples were in agreement with those obtained by reference procedures at the 95% confidence level.
Resumo:
A method for isotopic determination of silicon by mass spectrometry in plants and soils labeled with Si-30 is reported. The development of this method is for use with studies involving the physiological process of absorption, transport, and redistribution of Si in the soil-plant system by use of the stable isotope Si-30 as a tracer. The procedure leads to SiF4 formation, and the isotopic determination of Si was based on the measurements of the (SiF3+)-Si-28, (SiF3+)-Si-29, and (SiF3+)-Si-30 signals. Relative standard deviation of Si-30 abundance measurements (n = 6) were lower than 0.1%, and the detection limit was 0.5 mg Si (dry mass).
Resumo:
A method for simultaneous determination of Cr, Fe, Co, Ni, Cu, Zn, As e Pb in liquid chemical waste using Energy Dispersive X-Ray Fluorescence (EDXRF) technique was evaluated. A small sample amount (200 mu L) was dried on a 6.35 mu m thickness Mylar film at 60 degrees C and the analyses were carried out using an EDXRF spectrometer operated with an X-ray Mo tube (Zr filter) at 30 kV/20 mA. The acquisition time was 300 s and the Ga element was utilized as internal standard at 25 mg/L for quantitative analysis. The method trueness was assessed by spiking and the detection limit for those elements ranged from 0.39 to 1.7 mg/L. This method is notable because it assists the choice of the more appropriated waste treatment procedure, in which inter elemental interference is a matter of importance. In addition, this inexpensive method allows a non-destructive determination of the elements from (19)K to (92)U simultaneously.
Resumo:
A simple and reliable method for Hg determination in fish samples has been developed. Lyophilised fish tissue samples were extracted in a 25% (w/v) tetramethylammonium hydroxide (TMAH) solution; the extracts were then analysed by FI-CVAFS. This method can be used to determine total and inorganic Hg, using the same FI manifold. For total Hg determination, a 0.1% (w/v) KMnO(4) solution was added to the FI manifold at the sample zone, followed by the addition of a 0.5% (w/v) SnCl(2) solution, whereas inorganic Hg was determined by adding a 0.1% (w/v) L-cysteine solution followed by a 1.0% (w/v) SnCl(2) solution to the FI system. The organic fraction was determined as the difference between total and inorganic Hg. Sample preparation, reagent consumption and parameters that can influence the FI-CVAFS performance were also evaluated. The limit of detection for this method is 3.7 ng g(-1) for total Hg and 4.3 ng g(-1) for inorganic Hg. The relative standard deviation for a 1.0 mu gL(-1) CH(3)Hg standard solution (n = 20) was 1.1%, and 1.3% for a 1.0 mu gL(-1) Hg(2+) standard solution (n = 20). Accuracy was assessed by the analysis of Certified Reference Material (dogfish: DORM-2, NRCC). Recoveries of 99.1% for total Hg and 93.9% inorganic Hg were obtained. Mercury losses were not observed when sample solutions were re-analysed after a seven day period of storage at 4 degrees C.
Resumo:
Laser induced breakdown spectrometry (LIBS) was applied for the determination of macro (P, K, Ca, Mg) and micronutrients (B, Cu, Fe, Mn and Zn) in sugar cane leaves, which is one of the most economically important crops in Brazil. Operational conditions were previously optimized by a neuro-genetic approach, by using a laser Nd:YAG at 1064 nm with 110 mJ per pulse focused on a pellet surface prepared with ground plant samples. Emission intensities were measured after 2.0 mu s delay time, with 4.5 mu s integration time gate and 25 accumulated laser pulses. Measurements of LIBS spectra were based on triplicate and each replicate consisted of an average of ten spectra collected in different sites (craters) of the pellet. Quantitative determinations were carried out by using univariate calibration and chemometric methods, such as PLSR and iPLS. The calibration models were obtained by using 26 laboratory samples and the validation was carried out by using 15 test samples. For comparative purpose, these samples were also microwave-assisted digested and further analyzed by ICP OES. In general, most results obtained by LIBS did not differ significantly from ICP OES data by applying a t-test at 95% confidence level. Both LIBS multivariate and univariate calibration methods produced similar results, except for Fe where better results were achieved by the multivariate approach. Repeatability precision varied from 0.7 to 15% and 1.3 to 20% from measurements obtained by multivariate and univariate calibration, respectively. It is demonstrated that LIBS is a powerful tool for analysis of pellets of plant materials for determination of macro and micronutrients by choosing calibration and validation samples with similar matrix composition.