282 resultados para dentin microhardness
Resumo:
Purpose: To evaluate the effect of light guide distance and the different photoactivation methods on the degree of conversion (DC) and microleakage of a composite. Methods and Materials: Three photoactivation protocols (600mW/cm(2) x 40 seconds; 400 mW/cm(2) x 60 seconds or 200 mW/cm(2) x 20 seconds, followed by 500 mW/cm(2) X 40 seconds) and three distances from the light source (0, 3 or 7 mm) were tested. Cylindrical specimens (5 nun diameter; 2 mm tall; n=3) were prepared for the DC test (FT-Raman). Class V cavities were made in 90 bovine incisors to conduct the microleakage test. The specimens were conditioned for 15 seconds with phosphoric acid (37%), followed by application of the adhesive system Prime & Bond NT (Dentsply/Caulk). The preparations were restored in bulk. The specimens were stored for 24 hours in distilled water (37 degrees C) before being submitted to the silvernitrate microleakage protocol. The restorations were sectioned and analyzed under 25x magnification. Results: Statistical analyses (two-way ANOVAs and Tukey test, alpha=0.05) found significance only for the factor distance (p=0.015) at the top of the composite for the DC test. Conversion was statistically lower for the 7 mm groups compared to the 0 and 3 mm groups, which were equivalent to each other. At the bottom of the specimens, none of the factors or interactions was significant (p<0.05). The Kruskal-Wallis test showed that, in general, the soft-start method led to lower microleakage scores when compared to the continuous modes, mainly when associated with a distancing of 7 mm (p<0.01). With the exception of specimens irradiated with 400mW/cm(2) that did not demonstrate variations on scores for the distances tested, higher microleakage was observed for shorter distances from the light source. Conclusions: Soft-start methods may reduce microleakage when the light guide distancing provides a low level of irradiance, which also causes a discrete reduction in the DC.
Resumo:
Objective: To examine the morphological, early and long-term microtensile bond strengths (mu TBS) of one-step self-etch systems to unground and ground enamel. Materials and Methods: Resin composite (Filtek Z250) buildups were bonded to the buccal and lingual enamel surfaces (unground, bur-cut or SiC-roughened enamel) of third molars after adhesive application using the following adhesives: Clearfil S(3) Bond (CS3); Adper Prompt L-Pop (ADP); iBond (iB) and, as the control, Clearfil SE Bond (CSE). Six tooth halves were assigned for each condition. After storage in water (24 hours/37 degrees C), the bonded specimens were sectioned into beams (0.8 mm(2)) and subjected to pTBS (0.5 mm/min) either immediately (IM) or after six (6M) or 12 months (12M) of water storage. The data were analyzed by three-way repeated measures ANOVA and Tukey`s test (alpha=0.05). Surface conditioning was observed under scanning electron microscopy (SEM). Results: The mu TBS in the Si-C paper and diamond bur groups were similar and higher than the unground group. No significant difference was observed among the different storage periods, except for CS3, which showed an increase in the pTBS after 12M. The etching pattern was more retentive on ground enamel. Conclusions: One-step self-etch adhesives showed higher bond strengths on ground enamel and no reductions in resin-enamel bonds were observed after 12M of water storage.
Resumo:
Stress distributions in torsion and wire-loop shear tests were compared using three-dimensional (3-D) linear-elastic finite element method, in an attempt to predict the ideal conditions for testing adhesive strength of dental resin composites to dentin. The torsion test presented lower variability in stress concentration at the adhesive interface with changes in the proportion adhesive thickness/resin composite diameter, as well as lower variability with changes in the resin composite elastic modulus. Moreover, the torsion test eliminated variability from changes in loading distance, and reduced the cohesive fracture tendency in the dentin. The torsion test seems to be more appropriate than wire-loop shear test for testing the resin composite-tooth interface strength. (c) Koninklijke Brill NV, Leiden, 2009
Resumo:
Objectives: To compare the response of human dental pulp capped with a mineral trioxide aggregate (MTA) and Ca(OH)(2) powder. Methods and Material: Pulp exposures were performed on the occlusal floor of 40 permanent premolars. The pulp was then capped with either Ca(OH)(2) powder (CH) or MTA and restored with resin composite. After 30 days (groups CH30 and MTA30) and 60 days (groups CH60 and MTA60), the teeth were extracted and processed for HE and categorized in a histological score system. The data were subjected to Kruskal-Wallis and Conover tests (alpha=0.05). Results: In regard to dentin bridge formation, CH30 showed a tendency towards superior performance compared to MTA30 (p>0.05), although the products showed comparable results at day 60. In the item ""Inflammation"" and ""General State of the Pulp"" (p>0.05), CH showed a tendency towards presenting a higher inflammatory response. In the item ""Other Pulpal Findings,"" MTA and Ca(OH)(2) showed equal and excellent performance after 30 and 60 days (p>0.05). Conclusion: After 30 days, Ca(OH)(2) powder covered with calcium hydroxide cement showed faster hard tissue bridge formation compared to MTA. After 60 days, Ca(OH)(2) powder or NITA materials showed a similar and excellent histological response with the formation of a hard tissue bridge in almost all cases with low inflammatory infiltrate.
Resumo:
Objective: Verify the influence of radiant exposure (H) on composite degree of conversion (DC) and mechanical properties. Methods: Composite was photoactivated with 3, 6, 12, 24, or 48 J/cm(2). Properties were measured after 48-h dry storage at room temperature. DC was determined on the flat surfaces of 6 mm x 2 mm disk-shaped specimens using FTIR. Flexural strength (FS) and modulus (FM) were accessed by three-point bending. Knoop microhardness number (KHN) was measured on fragments of FS specimens. Data were analyzed by one-way ANOVA/Tukey test, Student`s t-test, and regression analysis. Results: DC/top between 6 and 12 J/cm(2) and between 24 and 48 J/cm(2) were not statistically different. No differences between DC/top and bottom were detected. DC/bottom, FM, and KHN/top showed significant differences among all H levels. FS did not vary between 12 and 24 J/cm(2) and between 24 and 48 J/cm(2). KHN/bottom at 3 and 6 J/cm(2) was similar. KHN between top and bottom was different up to 12 J/cm(2). Regression analyses having H as independent variable showed a plateau region above 24 J/cm(2). KHN increased exponentially (top) or linearly (bottom) with DC. FS and FM increased almost linearly with DC/bottom up to 55% conversion. Conclusions: DC and mechanical properties increased with radiant exposure. Variables leveled off at high H levels. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Finite element analysis (FEA) utilizing models with different levels of complexity are found in the literature to study the tendency to vertical root fracture caused by post intrusion (""wedge effect""). The objective of this investigation was to verify if some simplifications used in bi-dimensional FEA models are acceptable regarding the analysis of stresses caused by wedge effect. Three plane strain (PS) and two axisymmtric (Axi) models were studied. One PS model represented the apical third of the root entirely, in dentin (PS-nG). The other models included gutta-percha in the apical third, and differed regarding dentin-post relationship: bonded (PS-B and Axi-B) or nonbonded (PS-nB and Axi-nB). Mesh discretization and material properties were similar for all cases. Maximum principal stress (sigma(max)) was analyzed as a response to a 165 N longitudinal load. Stress magnitude and orientation varied widely (PS-nG: 10.3 MPa; PS-B: 0.8 MPa; PS-nB: 10.4 MPa; Axi-13: 0.2 MPa, Axi-nB: 10.8 MPa). Axi-nB was the only model where all (sigma(max) vectors at the apical third were perpendicular to the model plane. Therefore, it is adequate to demonstrate the tendency to vertical root fractures caused by wedge effect. Axi-13 showed only part of the (sigma(max) perpendicular to the model plane while PS models showed sigma(max) on the model plane. In these models, sigma(max) orientation did not represent a situation where vertical root fracture would occur due to wedge effect. Adhesion between post and dentin significantly reduced (c) 2007 Wiley Periodicals, Inc.
Resumo:
Purpose: To evaluate early and 24-hour microtensile bond strength (mu TBS) and the degree of conversion (DC) of one representative adhesive system from each of the four current bonding approaches. Methods: 40 human molars were sectioned occluso-gingivally into two halves. Resin composite was bonded incrementally to flat, mid-coronal dentin, using the adhesives Adper Scotchbond MP (MP); Adper Scotchbond 2 (SB); Clearfil SE Bond (SE); and Adper Prompt L-Pop (LP) according to the respective manufacturer`s instructions (n= 10). One half was immediately sectioned into sticks and subjected to mu TBS test. As the sectioning process took approximately 1 hour, the results were designated as 1-hour bond strengths. The other half was stored in distilled water at 37 degrees C for 24 hours before being sectioned and tested. The DC of these systems was measured using Fourier Transform-Raman spectroscopy in three periods: immediately, 1 and 24 hours after polymerization. Data were analyzed with ANOVA and Tukey`s tests. Results: There were no significant differences between the 1-hour and 24-hour bond strengths (P> 0.05), or among the DC measured immediately, 1 hour and 24 hours after polymerization (P> 0.05). However, significant differences were observed among adhesives (P< 0.05). mu TBS values obtained, in MPa (1 hour/24 hour), were: SB (48.6 + 1.3/48.4 + 3.5) = SE (51.9 + 4.7/53.3 +/- 2.9) > MP (35.3 +/- 10.9/38.6 + 6.7) > LP (25.5 + 1.1/26.0 + 1.5). The DC, in percentage (immediately/1 hour/24 hour), were: SE (81/82/87) > MP (79/77/81) > SB (60/63/65) > LP (39/37/42).
Resumo:
This study examined the early and long-term microtensile bond strengths (mu TBS) and interfacial enamel gap formation (IGW) of two-step selfetch systems to unground and ground enamel. Resin composite (Filtek Z250) buildups were bonded to proximal enamel surfaces (unground, bur-cut or SiC-treated enamel) of third molars after the application of four self-etch adhesives: a mild (Clearfil SE Bond [SE]), two moderate (Optibond Solo Plus Self-Etch Primer [SO] and AdheSE [AD]) and a strong adhesive (Tyrian Self Priming Etchant + One Step Plus [TY]) and two etch-and-rinse adhesive systems (Single Bond [SB] and Scotchbond Multi-Purpose Plus [SBMP]). Ten tooth halves were assigned for each adhesive. After storage in water (24 hours/37 degrees C), the bonded specimens were sectioned into beams (0.9 mm(2)) and subjected to mu TBS (0.5 mm/minute) or interfacial gap width measurement (stereomicroscope at 400x) either immediately (IM) or after 12 months (12M) of water storage. The data were analyzed by three-way repeated measures ANOVA and Tukey`s test (alpha=0.05). No gap formation was observed in any experimental condition. The mu TBS in the Si-C paper and diamond bur groups were similar and greater than the unground group only for the moderate self-etch systems (SO and AD). No reductions in bond strength values were observed after 12 months of water storage, regardless of the adhesive evaluated.
Resumo:
Introduction: This study compared the combined use of sodium hypochlorite (NaOCl) and chlorhexidine (CXH) with citric acid and CXH on dentinal permeability and precipitate formation. Methods: Thirty-four upper anterior teeth were prepared by rotary instrumentation and NaOCl. The root canal surfaces were conditioned for smear layer removal using 15% citric acid solution under ultrasonic activation and a final wash with distilled water. All teeth were dried, and 30 specimens were randomly divided into three equal groups as follows: positive control group (PC), no irrigation; 15% citric acid + 2% CHX group (CA + CHX); and 1% NaOCl + 2% CHX group (NaOCl + CHX). All roots were immersed in a 0.2% Rhodamine B solution for 24 hours. One-millimeter-thick slices from the cementum-enamel junction were scanned at 400 dpi and analyzed using the software ImageLab (LIDO-USP, Sao Paulo, Brazil) for the assessment of leakage in percentage. For scanning electron microscopy analysis, four teeth, irrigated for NaOCl + CHX samples, were split in half, and each third was evaluated at 1,000x and 5,000x (at the precipitate). Results: Using the analysis of variance test followed by the Bonferroni comparison method, no statistical differences between groups were found when analyzed at the cervical and medium thirds. At the apical third, differences between the PC and NaOCl + CHX (p<0.05) and CA + CHX and NaOCl + CHX could be seen (p < 0.05). Conclusion: The combination of 1% NaOCl and 2% CHX solutions results in the formation of a flocculate precipitate that acts as a chemical smear layer reducing the dentinal permeability in the apical third. (J Endod 2010;36:847-850)
Resumo:
Matrix metalloproteinase (MMP) inhibition has been shown to reduce dentin caries progression, but its role in dental erosion has not yet been assessed. This study tested the hypothesis that gels containing MMP inhibitors (epigallocatechin gallate-EGCG and chlorhexidine) can prevent dental erosion. Volunteers (n = 10) wore palatal devices containing bovine dentin blocks (n = 10/group) treated for 1 min with EGCG at 10 (EGCG10) or 400 mu M (EGCG400), chlorhexidine at 0.012%, F at 1.23% (NaF), and no vehicle (placebo). Erosion was performed with Coca-Cola (R) (5 min) 4X/day during 5 days. The wear, assessed by profilometry (mean +/- SD, mu m), was significantly reduced by the gels containing MMP inhibitors (0.05 +/- 0.02(a), 0.04 +/- 0.02(a), and 0.05 +/- 0.02(a) for EGCG10, EGCG400, and chlorhexidine, respectively) when compared with NaF (0.79 +/- 0.35(b)) and placebo gels (1.77 +/- 0.35(b)) (Friedman and Dunn`s tests, p < 0.01). The use of gels delivering MMP inhibitors was shown to prevent erosion and opens a new perspective for protection against dental erosion.
Resumo:
The aims of this study were: (1) to correlate surface (SH) and cross-sectional hardness (CSH) with microradiographic parameters of artificial enamel lesions; (2) to compare lesions prepared by different protocols. Fifty bovine enamel specimens were allocated by stratified randomisation according to their initial SH values to five groups and lesions produced by different methods: MC gel (methylcellulose gel/lactic acid, pH 4.6, 14 days); PA gel (polyacrylic acid/lactic acid/hydroxyapatite, pH 4.8, 16 h); MHDP (undersaturated lactate buffer/methyl diphosphonate, pH 5.0, 6 days); buffer (undersaturated acetate buffer/fluoride, pH 5.0, 16 h), and pH cycling (7 days). SH of the lesions (SH(1)) was measured. The specimens were longitudinally sectioned and transverse microradiography (TMR) and CSH measured at 10- to 220-mu m depth from the surface. Overall, there was a medium correlation but non-linear and variable relationship between mineral content and root CSH. root SH(1) was weakly to moderately correlated with surface layer properties, weakly correlated with lesion depth but uncorrelated with integrated mineral loss. MHDP lesions showed the highest subsurface mineral loss, followed by pH cycling, buffer, PA gel and MC gel lesions. The conclusions were: (1) CSH, as an alternative to TMR, does not estimate mineral content very accurately, but gives information about mechanical properties of lesions; (2) SH should not be used to analyse lesions; (3) artificial caries lesions produced by the protocols differ, especially considering the method of analysis. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
This in vitro study evaluated the effect of a prolonged erosive pH cycling on the superficial microhardness change (SMHC) and the erosive wear of different restorative materials. Eighty enamel specimens with prepared cavities of 1.5 x 1.5 mm were randomly divided into eight groups according to the restorative materials used for the fillings (RMGI - resin-modified glass-ionomer, CGI - conventional glass-ionomer, CR- composite resin, A - amalgam) and immersion media used (ERO - erosive medium or SAL - artificial saliva). During 35 days, half of the specimens were immersed in a cola drink (ERO), for 5 min, three times a day, and they remained in SAL between the erosive cycles. The other half of the specimens was immersed in SAL only, for the entire experimental period (control). Data were tested for significant differences by anova and Tukey`s tests (P < 0.05). Scanning electron microscopy images were made to illustrate the enamel erosive wear and restorative materials alterations. The mean SMHC (%) and mean erosive wear (mu m) of the materials were: RMGI-ERO (30/0.5); CGI-ERO (37/0.5); CR-ERO (-0.3/0.3); A-ERO (-4/0.3); RMGI-SAL (4/0.4); CGI-SAL (-6/0.4); CR-SAL (-3/0.2) and A-SAL (2/0.4). Scanning electron microscopy images showed pronounced enamel erosive wear on groups submitted to erosive pH cycling when compared with groups maintained in saliva. In conclusion, the prolonged pH cycling promoted significantly higher alterations (SMHC and erosive wear) on the glass-ionomer cements than the CR and amalgam.
Resumo:
Objective: This in situ/ex vivo study assessed the effect of titanium tetrafluoride (TiF4) on permanent human enamel subjected to erosion. Design: Ten volunteers took part in this study performed in two phases. In the first phase (ERO), they wore acrylic palatal appliances containing two enamel blocks, divided into two rows: TiF4 (F) and no-TiF4 (no-F). During the 1st day, the formation of a salivary pellicle was allowed. In the 2nd day, the TiF4 solution was applied on one row (ERO + F), whereas on the other row no treatment was performed (ERO + no-F). From 3rd until 7th day, the blocks were subjected to erosion, 4x per day. In the 2nd phase (no-ERO), the volunteers wore acrylic palatal appliances containing one enamel block, during 2 days, to assess the effect of TiF4 only (no-ERO + F). Enamel alterations were determined using profilometry (wear), microhardness (%SMHC) tests, scanning electron microscope and microprobe analysis. The %SMHC and wear were tested using ANOVA and Tukey`s post hoc tests (p < 0.05). Results: The mean of %SMHC and wear ( mu m) values ( +/- S.D.) were, respectively: ERO + F -73.32 +/- 5.16(A)/2.40 +/- 0.60(a); ERO + no-F -83.49 +/- 4.59B/1.17 +/- 0.48(b) and no-ERO + F -67.92 +/- 6.16(A)/0.21:E 0.09(c). In microscope analysis, the no-F group showed enamel with honeycomb appearance. For F groups, it was observed a surface coating with microcracks. The microprobe analysis revealed the presence of the following elements (%) in groups ERO + F, ERO + no-F and no-ERO + F, respectively: Ca (69.9, 72.5, 66.25); P (25.9, 26.5, 26.06); Ti (3.0, 0, 5.93). Conclusions: The TiF4 was unable to reduce dental erosion. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This in vitro study evaluated the effect of erosive pH cycling on the percentage of surface micro-hardness change (%SMHC) and wear of different restorative materials and bovine enamel restored with these materials. Eighty enamel specimens were randomly divided into eight groups according to the restorative materials and immersion media used: GI/GV-resin-modifled glass-ionomer, GII/GVI-conventional glass-ionomer, GIII/GVII-resin composite and GIV/GVIII-amalgam. Over a period of seven days, groups GI to GIV were immersed in a cola drink (ERO) for 5 minutes, 3x/day and kept in artificial saliva between erosive cycles. Groups GV to GVIII were immersed in artificial saliva (SAL) throughout the entire experimental period (control). Data were tested for significant differences using ANOVA and Tukey`s tests (p < 0.05). For %SMHC, considering the restorative materials, no significant differences were detected among the materials and immersion media. Mean wear was higher for the resin modified glass ionomer cement when compared to conventional cement, but those materials did not significantly differ from the others. For enamel analyses, erosive pH cycling promoted higher wear and %SMHC compared to saliva. There were no significant differences in wear and %SMHC of enamel around the different restorative materials, regardless of the distance from the restorative material (50, 150 or 300 mu m). In conclusion, there were only subtle differences among the materials, and these differences were not able to protect the surrounding enamel from erosion.
Resumo:
Introduction: Endodontic treatment is commonly based on nonspecific elimination of intraradicular micro-organisms. Although some authors prefer single-visit root canal operations for endodontic treatment, several studies have shown the importance of intracanal medication between sessions to kill microorganisms that biomechanical preparations alone cannot achieve. The purpose of this study was to evaluate the efficacy of calcium hydroxide Ca(OH)2 and chlorhexidine gel on the elimination of intratubular Enterococcus faecalis. Methods: Human uniradicular teeth contaminated with E. faecalis were treated with Ca(OH)(2), 2% chlorhexidine gel, Ca(OH)(2) plus 2% chlorhexidine gel, or saline (0.9% NaCl) as a negative control. Samples obtained at a depth of 0 to 100 mu m and 100 to 200 mu m from these root canal preparations were analyzed for bacterial load by counting the number of colonyforming units (CFUs) and bacterial viability using fluorescence microscopy. Results: A significant decrease in the number of CFUs and the percentage of viable E. faecalis was observed after treatment with either Ca(OH)(2) or chlorhexidine when compared with the control group. Additionally, chlorhexidine gel had a significantly higher antimicrobial efficacy as measured by the number of CFUs and the percentage of viable cells than Ca(OH)(2). No differences were observed between the antimicrobial properties of chlorhexidine gel with and without the addition of Ca(OH)(2). Conclusion: Both Ca(OH)(2) and chlorhexidine have antimicrobial effects on E. faecalis. Chlorhexidine had increased antimicrobial activity when compared with Ca(OH)(2.) Ca(OH)(2) combined with chlorhexidine showed similar antimicrobial activity to chlorhexidine alone. (J Endod 2010;36:1389-1393)