203 resultados para Degrees, Doctrine of.
Resumo:
MgB(2) is considered to be an important conductor for applications. Optimizing flux pinning in these conductors can improve their critical currents. Doping can influence flux pinning efficiency and grain connectivity, and also affect the resistivity, upper critical field and critical temperature. This study was designed to attempt the doping of MgB(2) on the Mg sites with metal-diborides using high-energy ball milling. MgB(2) samples were prepared by milling pre-reacted MgB(2) and TaB(2) powders using a Spex 8000M mill with WC jars and balls in a nitrogen-filled glove box. The mixing concentration in (Mg(1-x)Ta(x))B(2) was up to x = 0.10. Samples were removed from the WC jars after milling times up to 4000 minutes and formed into pellets using cold isostatic pressing. The pellets were heat treated in a hot isostatic press (HIP) at 1000 degrees C under a pressure of 30 kpsi for 24 hours. The influence that milling time and TaB(2) addition had on the microstructure and the resulting superconducting properties of TaB(2)-added MgB(2) is discussed. Improvement J(c) of at high magnetic fields and of pinning could be obtained in milled samples with added TaB(2) The sample with added 5at.% TaB(2) and milled for 300 minutes showed values of J(c) similar to 7 x 10(5) A/cm(2) and F(p) similar to 14 GN/m(3) at 2T, 4.2 K. The milled and TaB(2)-mixed samples showed higher values of mu(0)H(irr) than the unmilled-unmixed sample.
Resumo:
The joint process between tapes of coated conductors is a critical issue for the most of the applications of high temperature superconductors (HTS). Using different fabrication techniques joints of YBCO coated superconductors were prepared and characterized through electrical measurements. For soldering material low melting point eutectic alloys, such as In-Sn (m.p. 116 degrees C) and Sn-Pb (m. p. 189 degrees C) were selected to prepare lap joints with effective length between 1 to 20 cm. The splice resistance and the critical current of the joints were evaluated by I-V curve measurements with the maximum current strength above the critical current, in order to evaluate the degree of degradation for each joint method. Pressed lap joints prepared with tapes without external reinforcement presented low resistance lap joint nevertheless some critical current degradation occurs when strong pressing is applied. When mechanical pressure is applied during the soldering process we can reduce the thickness of the solder alloy and a residual resistance arises from contributions of high resistivity matrix and external reinforcement. The lap joints for reinforced tape were prepared using two methods: the first, using ""as-supplied"" tape and the other after reinforcement-removal; in the latter case, the tapes were resoldered using Sn-Pb alloy. The results using several joint geometries, distinct surface preparation processes and different soldering materials are presented and analysed. The solder alloy with lower melting point and the longer joint length presented the smallest joint resistance.
Resumo:
Biopulping of Eucalyptus grandis wood chips with Phanerochaete chrysosporium RP-78 was evaluated under non-aseptic conditions in laboratory and mill wood-yard. The ability of P. chrysosporium to compete with indigenous fungi present in fresh wood chips was notorious under controlled laboratory experiments. A subsequent step involved an industrial test performed with 10-ton of fresh wood chips inoculated and maintained at 37 +/- 38 degrees C for 39 days in a biopulping pilot plant. Biotreated wood chips were pulped in a chemithermomechanical pulping mill. Net energy consumption during refining was 745 kWh ton(-1) and 610 kWh ton(-1) of processed pulp for control and biotreated wood chips, respectively. Accordingly, 18.5% net energy saving could be achieved. Biopulps contained lower shive content and had improved strength properties compared to control pulps. Tensile index improved from 25 +/- 1 N m g(-1) to 33.6 +/- 0.5 N m g(-1) and delamination strength from 217 +/- 19 kPa to 295 +/- 30 kPa.
Resumo:
Traditionally, the raw materials for beer production are barley, hops, water, and yeast, but most brewers use also different adjuncts. During the alcoholic fermentation, the contribution of aroma compounds from other ingredients to the final beer flavor depends on the wort composition, on the yeast strain, and mainly on the process conditions. In this context, banana can also be a raw material favorable to alcoholic fermentation being rich in carbohydrates and minerals and providing low acidity. In this work, the objective was to evaluate the performance of wort adjusted with banana juice in different concentrations. For this, static fermentations were conducted at 15 degrees C at pilot scale (140 L of medium). The addition of banana that changed the concentration of all-malt wort from 10 degrees P to 12 and 15 degrees P were evaluated (degrees P is the weight of the extract or the sugar equivalent in 100 g solution, at 20 degrees C). The results showed an increase in ethanol production, with approximately 0.4 g/g ethanol yield and 0.6 g/L h volumetric productivity after 84 h of processing when concentrated wort was used. Thus, it was concluded that banana can be used as an adjunct in brewing methods, helping in the development of new products as well as in obtaining concentrated worts.
Resumo:
Banana, an important component in the diet of the global population, is one of the most consumed fruits in the world. This fruit is also very favorable to industry processes (e. g., fermented beverages) due to its rich content on soluble solids and minerals, with low acidity. The main objective of this work was to evaluate the influence of factors such as banana weight and extraction time during a hot aqueous extraction process on the total soluble solids content of banana. The extract is to be used by the food and beverage industries. The experiments were performed with 105 mL of water, considering the moisture of the ripe banana (65%). Total sugar concentrations were obtained in a beer analyzer and the result expressed in degrees Plato (degrees P, which is the weight of the extract or the sugar equivalent in 100 g solution at 20 degrees C), aiming at facilitating the use of these results by the beverage industries. After previous studies of characterization of the fruit and of ripening performance, a 2(2) full-factorial star design was carried out, and a model was developed to describe the behavior of the dependent variable (total soluble solids) as a function of the factors (banana weight and extraction time), indicating as optimum conditions for extraction 38.5 g of banana at 39.7 min.
Resumo:
Ethanol/water organosolv pulping was used to obtain sugarcane bagasse pulp that was bleached with sodium chlorite. This bleached pulp was used to obtain cellulosic films that were further evaluated by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). A good film formation was observed when temperature of 74 degrees C and baths of distilled water were used, which after FTIR, TGA, and SEM analysis indicated no significant difference between the reaction times. The results showed this to be an interesting and promising process, combining the prerequisites for a more efficient utilization of agro-industrial residues.
Resumo:
Refractory castables are composed of fractions of fine to fairly coarse particles. The fine fraction is constituted primarily of raw materials and calcium aluminate cement, which becomes hydrated, forming chemical bonds that stiffen the concrete during the curing process. The present study focused on an evaluation of several characteristics of two refractory castables with similar chemical compositions but containing aggregates of different sizes. The features evaluated were the maximum load, the fracture energy, and the ""relative crack-propagation work"" of the two castables heat-treated at 110, 650, 1100 and 1550 degrees C. The results enabled us to draw the following conclusions: the heat treatment temperature exerts a significant influence on the matrix/aggregate interaction, different microstructures form in the castables with temperature, and a relationship was noted between the maximum load and the fracture energy. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
The influence of Al(2)O(3) addition and sintering parameters on the mechanical properties and cytotoxicity of tetragonal ZrO(2)-3 mol% Y(2)O(3) ceramics was evaluated. Samples containing 0, 10, 20 and 30 wt.% of Al(2)O(3) particles were prepared by cold uniaxial pressing (80 MPa) and sintered in air at 1500, 1550 and 1600 degrees C for 120 min. The effects of the sintering conditions on the microstructure were analyzed by X-ray diffraction analysis and scanning electron microscopy. Hardness and fracture toughness were determined by the Vickers indentation method and the mechanical resistance by four-point bending tests. As a preliminary biological evaluation, ""in vitro"" cytotoxicity tests were realized to determine the cytotoxic level of the ZrO(2)-Al(2)O(3) composites, using the neutral red uptake method with NCTC clones L929 from the American Type Culture Collection (ATCC) bank. Fully dense ceramic materials were obtained with a hardness ranging between 1340 HV and 1585 HV, depending on the amount of Al(2)O(3) in the ZrO(2) matrix. On the other hand, no significant influence of the Al(2)O(3) addition on fracture toughness was observed, exhibiting values near 8 MPa m(1/2) for all compositions and sintering conditions studied. The non-cytotoxic behavior, the elevated fracture toughness, the good bending strength (sigma(f) = 690 MPa) and the elevated Weibull`s modulus (m = 11) exhibited by the material, show that these ceramic composites are highly suitable biomaterials for dental implant applications. (C) 2008 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
In this work, the synthesis of Y(2)O(3) stabilized tetragonal zirconia polycrystals (Y-TZP)-alumina (Al(2)O(3)) powder mixture was performed by high-energy ball milling and the sintering behavior of this composite was investigated. In order to understand the phase transformations occurring during ball milling, samples were collected after different milling times, from 1 to 60 h. The milled powders were compacted by cold uniaxial pressing and sintered at 1400 and 1600 degrees C. Both powders and sintered samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry analysis (EDS) and mechanical properties. Fully dense samples were obtained after sintering at 1600 degrees C, while the samples sintered at 1400 degrees C presented a full density for powder mixtures milled for 30 and 60 h. Fracture toughness and Vickers hardnessvalues of the Y-T-ZP/Al(2)O(3) nanocomposite were improved due to dispersed Al(2)O(3) grains and reduced ZrO(2) grain size. Samples sintered at 1400 degrees C, based on powders milled for 60 h, presented high K(IC) and hardness values near to 8.0 Mpan(1/2) and 15 GPa, respectively (C) 2008 Elsevier B.V. All rights reserved
Resumo:
Ti-6Al-4V alloy has been widely used in restorative surgery due to its high corrosion resistance and biocompatibility. Nevertheless, some studies showed that V and Al release in the organism might induce cytotoxic effects and neurological disorders, which led to the development of V-free alloys and both V- and Al-free alloys containing Nb, Zr, Ta, or Mo. Among these alloys, Ti-13Nb-13Zr alloy is promising due to its better biomechanical compatibility than Ti-6Al-4V. In this work, the corrosion behavior of Ti, Ti-6Al-4V, and Ti-xNb-13Zr alloys (x=5, 13, and 20) was evaluated in Ringer`s solution (pH 7.5) at 37 degrees C through open-circuit potential measurements, potentiodynamic polarization, and electrochemical impedance spectroscopy. Spontaneous passivity was observed for all materials in this medium. Low corrosion current densities (in the order of 10(-7) A/cm(2)) and high impedance values (in the order of 10(5) Omega cm(2) at low frequencies) indicated their high corrosion resistance. EIS results showed that the passivating films were constituted of an outer porous layer (very low resistance) and an inner compact layer (high resistance), the latter providing the corrosion resistance of the materials. There was evidence that the Ti-xNb-13Zr alloys were more corrosion resistant than both Ti and Ti-6Al-4V in Ringer`s solution.
Resumo:
Silicon carbide ceramics are very interesting materials to engineering applications because of their properties. These ceramics are produced by liquid phase sintering (LPS), where elevated temperature and time are necessary, and generally form volatile products that promote defects and damage their mechanical properties. In this work was studied the infiltration process to produce SiC ceramics, using shorter time and temperature than LPS, thereby reducing the undesirable chemical reactions. SiC powder was pressed at 300 MPa and pre-sintered at 1550 degrees C for 30 min. Unidirectional and spontaneous infiltration of this preform by Al2O3/Y2O3 liquid was done at 1850 degrees C for 5, 10, 30 and 60 min. The kinetics of infiltration was studied, and the infiltration equilibrium happened when the liquid infiltrated 12 mm into perform. The microstructures show grains of the SiC surrounded by infiltrated additives. The hardness and fracture toughness are similar to conventional SiC ceramics obtained by LPS. (c) 2007 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
The wetting of Ti-Cu alloys on Si3N4 was analyzed by the sessile drop method, using an imaging system with a CCD camera during the heating under argon flow. The contact angle was measured as a function of temperature and time. The samples were cut transversally and characterized by scanning electron microscopy and energy dispersive spectrometry (SEM/EDS). Wettability of the Ti-Cu alloy on Si3N4 is influenced by the reaction between the Ti and the ceramic. The TC1 and TC2 alloys presented low final contact angle values around 2 degrees and 26 degrees, respectively, indicating good wetting on Si3N4. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
In this work, SiC ceramics were liquid phase sintered (LPS), using AIN-Y(2)O(3) as additives, and oxidized at 1400 degrees C in air for up to 120 h. Oxidation was monitored by the weight gain of the samples as function of exposition time and temperature. A parabolic growth of the oxidation layer has been observed and the coefficient of the growth rate has been determined by relating the weight gain and the surface area. The effect of oxidation on strength has been determined by 4-point bending tests. Phase analysis by Xray diffraction and microstructural observation by scanning electron microscopy indicated the formation of a uniform and dense oxidation layer. The elimination of surface flaws and pores and the generation of compressive stresses in the surface resulted in a strength increase of the oxidized samples. (C) 2009 Published by Elsevier Ltd.
Resumo:
Nitric oxide (NO) plays a key role in body temperature (Tb) regulation of mammals, acting on the brain to stimulate heat loss. Regarding birds, the putative participation of NO in the maintenance of Tb in thermoneutrality or during heat stress and the site of its action (periphery or brain) is unknown. Thus, we tested if NO participates in the maintenance of chicks` Tb in those conditions. We investigated the effect of intramuscular (im; 25, 50, 100 mg/kg) or intracerebroventricular (icv; 22.5, 45, 90, 180 mu g/animal) injections of the non selective NO synthase inhibitor L-NAME on Tb of 5-day-old chicks at thermoneutral zone (TNZ; 31-32 degrees C) and under heat stress (37 degrees C for 5-6 h). We also verified plasma and diencephalic nitrite/nitrate levels in non-injected chicks under both conditions. At TNZ, 100 mg/kg (im) or 45,90,180 mu g (icv) of L-NAME decreased Tb. A significant correlation between Tb and diencephalic, but not plasma, nitrite/nitrate levels was observed. Heat stress-induced hyperthermia was inhibited by all tested doses of L-NAME (im and icv). Tb was correlated neither with plasma nor with diencephalic nitrite/nitrate levels during heat stress. These results indicate the involvement of brain NO in the maintenance of Tb of chicks, an opposite action of that observed in mammals, and may modulate hyperthermia. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The airflow velocities and pressures are calculated from a three-dimensional model of the human larynx by using the finite element method. The laryngeal airflow is assumed to be incompressible, isothermal, steady, and created by fixed pressure drops. The influence of different laryngeal profiles (convergent, parallel, and divergent), glottal area, and dimensions of false vocal folds in the airflow are investigated. The results indicate that vertical and horizontal phase differences in the laryngeal tissue movements are influenced by the nonlinear pressure distribution across the glottal channel, and the glottal entrance shape influences the air pressure distribution inside the glottis. Additionally, the false vocal folds increase the glottal duct pressure drop by creating a new constricted channel in the larynx, and alter the airflow vortexes formed after the true vocal folds. (C) 2007 Elsevier Ltd. All rights reserved.