273 resultados para OD-21 undifferentiated pulp cells
Resumo:
Objective: The aims of the present study were to investigate the effect of low-intensity laser irradiation on the total number of mast cells as well as the percentage of degranulation in human gingiva. Blood vessel dilation was also evaluated. Background Data: It has been proposed that low-intensity laser irradiation can ameliorate pain, swelling, and inflammation. In periodontal tissue, mast cells may influence either the destructive events or the defense mechanism against periodontal disease via secretion of cytokines and through cellular migration to improve the healing process. Mast cells play an important role in the inflammatory process. Methods: Twenty patients with gingival enlargement indicated for gingivectomy were selected. Gingival fragments were obtained from each patient and divided into three different groups before surgery. One fragment was removed without any irradiation. The two others were submitted to punctual irradiation with an energy density of 8 J/cm(2) at an output power of 50 mW at 36 Hz for 36 sec before gingivectomy. Nondegranulated and degranulated mast cells were counted in five areas of the gingival fragment connective tissue. Major and minor diameters of the blood vessels were also measured. Results: Both red and infrared radiation promoted a significant increase in mast cell degranulation compared to controls; however, no statistically significant differences (p > 0.05) were observed between the irradiated groups. No significant differences among the groups were observed regarding blood vessel size. Conclusion: The results suggests that red and infrared wavelengths promote mast cell degranulation in human gingival tissue, although no dilation of blood vessels was observed. The effects of premature degranulation of mast cells in human tissue and the laser radiation protocol applied in this study encourage further investigations to extend these results into clinical practice.
Resumo:
Objective: To describe the ultrastructure of the interface between periodontal tissues and titanium mini-implants in rat mandibles. Materials and Methods: A titanium mini-implant was placed between the buccal roots of the mandibular first molar of 24 adult rats. After 21, 30, 45, 60, 90, and 120 days of implantation, the mandibular portion was removed and fixed in cacodylate-buffered 2% glutaraldehyde + 2.5% formaldehyde. The material was decalcified and processed for scanning and transmission electron microscopy. Results: Ultrastructural analysis revealed a thin cementum-like layer at longer times after implantation at the areas in which the periodontal ligament was in contact with the implant. Conclusions: The alveolar bone and the periodontal ligament reorganized their constituents around the implant, and a thin cementum-like layer was formed at longer times after implantation at the areas in which the periodontal ligament was in contact with the implant. (Angle Orthod. 2010;80:459-435.)
Resumo:
It is well known that cancer cells secrete angiogenic factors to recruit and sustain tumor vascular networks. However, little is known about the effect of endothelial cell-secreted factors on the phenotype and behavior of tumor cells. The hypothesis underlying this study is that endothelial cells initiate signaling pathways that enhance tumor cell survival and migration. Here, we observed that soluble mediators from primary human dermal microvascular endothelial cells induce phosphorylation of signal transducer and activator of transcription 3 (STAT3), Akt, and extracellular signal-regulated kinase (ERK) in a panel of head and neck squamous cell carcinoma (HNSCC) cells (OSCC-3, UM-SCC-1, UM-SCC-17B, UM-SCC-74A). Gene expression analysis demonstrated that interleukin-6 (IL-6), interleukin-8 (CXCL8), and epidermal growth factor (EGF) are upregulated in endothelial cells cocultured with HNSCC. Blockade of endothelial cell-derived IL-6, CXCL8, or EGF by gene silencing or neutralizing antibodies inhibited phosphorylation of STAT3, Akt, and ERK in tumor cells, respectively. Notably, activation of STAT3, Akt, and ERK by endothelial cells enhanced migration and inhibited anoikis of tumor cells. We have previously demonstrated that Bcl-2 is upregulated in tumor microvessels in patients with HNSCC. Here, we observed that Bcl-2 signaling induces expression of IL-6, CXCL8, and EGF, providing a mechanism for the upregulation of these cytokines in tumor-associated endothelial cells. This study expands the contribution of endothelial cells to the pathobiology of tumor cells. It unveils a new mechanism in which endothelial cells function as initiators of molecular crosstalks that enhance survival and migration of tumor cells.
Resumo:
Background: The thymus is a central lymphoid organ, in which bone marrow-derived T cell precursors undergo a complex process of maturation. Developing thymocytes interact with thymic microenvironment in a defined spatial order. A component of thymic microenvironment, the thymic epithelial cells, is crucial for the maturation of T-lymphocytes through cell-cell contact, cell matrix interactions and secretory of cytokines/chemokines. There is evidence that extracellular matrix molecules play a fundamental role in guiding differentiating thymocytes in both cortical and medullary regions of the thymic lobules. The interaction between the integrin alpha 5 beta 1 (CD49e/CD29; VLA-5) and fibronectin is relevant for thymocyte adhesion and migration within the thymic tissue. Our previous results have shown that adhesion of thymocytes to cultured TEC line is enhanced in the presence of fibronectin, and can be blocked with anti-VLA-5 antibody. Results: Herein, we studied the role of CD49e expressed by the human thymic epithelium. For this purpose we knocked down the CD49e by means of RNA interference. This procedure resulted in the modulation of more than 100 genes, some of them coding for other proteins also involved in adhesion of thymocytes; others related to signaling pathways triggered after integrin activation, or even involved in the control of F-actin stress fiber formation. Functionally, we demonstrated that disruption of VLA-5 in human TEC by CD49e-siRNA-induced gene knockdown decreased the ability of TEC to promote thymocyte adhesion. Such a decrease comprised all CD4/CD8-defined thymocyte subsets. Conclusion: Conceptually, our findings unravel the complexity of gene regulation, as regards key genes involved in the heterocellular cell adhesion between developing thymocytes and the major component of the thymic microenvironment, an interaction that is a mandatory event for proper intrathymic T cell differentiation.
Resumo:
The canine model provides a large animal system to evaluate many treatment modalities using stem cells (SCs). However, only bone marrow ( BM) protocols have been widely used in dogs for preclinical approaches. BM donation consists of an invasive procedure and the number and differentiation potential of its mesenchymal stem cells (MSCs) decline with age. More recently, umbilical cord was introduced as an alternative source to BM since it is obtained from a sample that is routinely discarded. Here, we describe the isolation of MSCs from canine umbilical cord vein (cUCV). These cells can be obtained from every cord received and grow successfully in culture. Their multipotent plasticity was demonstrated by their capacity to differentiate in adipocytic, chondrocytic, and osteocytic lineages. Furthermore, our results open possibilities to use cUCV cells in preclinical trials for many well-characterized canine model conditions homologs to human diseases.
Resumo:
The relationship between the level of cell confluence near the plateau phase of growth and blastocyst yield following somatic cell cloning is not well understood. We examined the effect of distinct cell culture confluence levels on in vitro development of cloned bovine embryos. In vitro-matured bovine oocytes were manually bisected and selected by DNA staining. One or two enucleated hemi-cytoplasts were paired and fused with an adult skin somatic cell. Cultured skin cells from an adult Nellore cow harvested at three distinct culture confluence levels (70-80, 80-90, and > 95%) were used for construction of embryos and hemi-embryos. After activation, structures were cultured in vitro as one embryo (1 x 100%) or as aggregates of two hemi-embryos (2 x 50%) per microwell. Fusion, cleavage and blastocyst rates were compared using the chi(2) test. The fusion rate for hemi-embryos (51.4%) was lower than for embryos (67.6%), with no influence of degree of cell confluence. However, blastocyst rates improved linearly (7.0, 17.5, and 29.4%) with increases in cell confluence. We conclude that degree of cell culture confluence significantly influences subsequent embryo development; use of a cell population in high confluence (> 90%) for nuclear transfer significantly improved blastocyst yield after cloning.
Resumo:
Papillomaviruses have been reported to be very difficult to grow in cell culture. Also, there are no descriptions of cell cultures from lesions of bovine cutaneous papillomatosis, with identification of different bovine papilloma virus (BPV) DNA sequences. In the present report, we describe primary cell cultures from samples of cutaneous lesions (warts). We investigated the simultaneous presence of different BPV DNA sequences, comparing the original lesion to different passages of the cell cultures and to peripheral blood. BPV 1, 2 and 4 DNA sequences were found in lesion samples, and respective cell cultures and peripheral blood, supporting our previous hypothesis of the possible activity of these sequences in different samples and now also showing how they can be maintained in different passages of cell cultures.
Resumo:
This work examines the sources of moisture affecting the semi-arid Brazilian Northeast (NEB) during its pre-rainy and rainy season (JFMAM) through a Lagrangian diagnosis method. The FLEXPART model identifies the humidity contributions to the moisture budget over a region through the continuous computation of changes in the specific humidity along back or forward trajectories up to 10 days period. The numerical experiments were done for the period that spans between 2000 and 2004 and results were aggregated on a monthly basis. Results show that besides a minor local recycling component, the vast majority of moisture reaching NEB area is originated in the south Atlantic basin and that the nearby wet Amazon basin bears almost no impact. Moreover, although the maximum precipitation in the ""Poligono das Secas'' region (PS) occurs in March and the maximum precipitation associated with air parcels emanating from the South Atlantic towards PS is observed along January to March, the highest moisture contribution from this oceanic region occurs slightly later (April). A dynamical analysis suggests that the maximum precipitation observed in the PS sector does not coincide with the maximum moisture supply probably due to the combined effect of the Walker and Hadley cells in inhibiting the rising motions over the region in the months following April.
Resumo:
Premise of the study: The phloem is a plant tissue with a critical role in plant nutrition and signaling. However, little is still known about the evolution of this tissue. In lianas of the Bignoniaceae, two distinct types of phloem coexist: a regular and a variant phloem. The cells associated with these two phloem types are known to be anatomically different; however, it is still unclear what steps were involved in the evolution of such differences. Methods: Here we studied the anatomical development of the regular and variant phloem in representatives of all 21 genera of Bignonieae and used a phylogenetic framework to investigate the timing of changes associated with the evolution of each phloem type. Key results: We found that the variant phloem always appears in a determinate location, between the leaf orthostichies. Furthermore, the variant phloem was mostly occupied by very wide sieve tubes and generally included a higher concentration of fibers, indicating an increase in conduction and mechanical support. On the other hand, the regular phloem included much more parenchyma, more and wider rays, and tiny sieve tubes that resembled terminal sieve tubes from plants with seasonal formation of vascular tissues; these findings suggest reduced conduction and higher storage capacity in the regular phloem. Conclusions: Overall, differences between the regular and variant phloem increased over time, leading to further specialization in conduction in the variant phloem and an increase in storage specialization in the regular phloem.
Resumo:
Background: Endothelial cells are of great interest for cell therapy and tissue engineering. Understanding the heterogeneity among cell lines originating from different sources and culture protocols may allow more standardized material to be obtained. In a recent paper, we showed that adrenalectomy interferes with the expression of membrane adhesion molecules on endothelial cells maintained in culture for 16 to 18 days. In addition, the pineal hormone, melatonin, reduces the adhesion of neutrophils to post-capillary veins in rats. Here, we evaluated whether the reactivity of cultured endothelial cells maintained for more than two weeks in culture is inversely correlated to plasma melatonin concentration. Methodology/Principal Findings: The nocturnal levels of melatonin were manipulated by treating rats with LPS. Nocturnal plasma melatonin, significantly reduced two hours after LPS treatment, returned to control levels after six hours. Endothelial cells obtained from animals that had lower nocturnal melatonin levels significantly express enhanced adhesion molecules and iNOS, and have more leukocytes adhered than cells from animals that had normal nocturnal levels of melatonin (naive or injected with vehicle). Endothelial cells from animals sacrificed two hours after a simultaneous injection of LPS and melatonin present similar phenotype and function than those obtained fromcontrol animals. Analyzing together all the data, taking into account the plasma melatonin concentration versus the expression of adhesion molecules or iNOS we detected a significant inverse correlation. Conclusions/Significance: Our data strongly suggest that the plasma melatonin level primes endothelial cells ""in vivo,"" indicating that the state of the donor animal is translated to cells in culture and therefore, should be considered for establishing cell banks in ideal conditions.
Resumo:
Umbilical cord mesenchymal stromal cells (MSC) have been widely investigated for cell-based therapy studies as an alternative source to bone marrow transplantation. Umbilical cord tissue is a rich source of MSCs with potential to derivate at least muscle, cartilage, fat, and bone cells in vitro. The possibility to replace the defective muscle cells using cell therapy is a promising approach for the treatment of progressive muscular dystrophies (PMDs), independently of the specific gene mutation. Therefore, preclinical studies in different models of muscular dystrophies are of utmost importance. The main objective of the present study is to evaluate if umbilical cord MSCs have the potential to reach and differentiate into muscle cells in vivo in two animal models of PMDs. In order to address this question we injected (1) human umbilical cord tissue (hUCT) MSCs into the caudal vein of SJL mice; (2) hUCT and canine umbilical cord vein (cUCV) MSCs intra-arterially in GRMD dogs. Our results here reported support the safety of the procedure and indicate that the injected cells could engraft in the host muscle in both animal models but could not differentiate into muscle cells. These observations may provide important information aiming future therapy for muscular dystrophies.
Resumo:
Background: Protein aggregates containing alpha-synuclein, beta-amyloid and hyperphosphorylated tau are commonly found during neurodegenerative processes which is often accompanied by the impairment of mitochondrial complex I respiratory chain and dysfunction of cellular systems of protein degradation. In view of this, we aimed to develop an in vitro model to study protein aggregation associated to neurodegenerative diseases using cultured cells from hippocampus, locus coeruleus and substantia nigra of newborn Lewis rats exposed to 0.5, 1, 10 and 25 nM of rotenone, which is an agricultural pesticide, for 48 hours. Results: We demonstrated that the proportion of cells in culture is approximately the same as found in the brain nuclei they were extracted from. Rotenone at 0.5 nM was able to induce alpha-synuclein and beta amyloid aggregation, as well as increased hyperphosphorylation of tau, although high concentrations of this pesticide (over 1 nM) lead cells to death before protein aggregation. We also demonstrated that the 14kDa isoform of alpha-synuclein is not present in newborn Lewis rats. Conclusion: Rotenone exposure may lead to constitutive protein aggregation in vitro, which may be of relevance to study the mechanisms involved in idiopathic neurodegeneration.
Resumo:
AIM: To investigate the effects of malnutrition and refeeding on the P2X(2) receptor, nitric oxide synthase (NOS), calretinin, calbindin and choline acetyltransferase (ChAT) in neurons of the rat ileum. METHODS: We analyzed the co-localization, numbers and sizes of P2X(2)-expressing neurons in relation to NOS-IR (immunoreactive), calbindin-IR, ChAT-IR, and calretinin-IR neurons of the myenteric and submucosal plexus. The experimental groups consisted of: (1) rats maintained on normal feed throughout pregnancy until 42 d post-parturition (N); (2) rats deprived of protein throughout pregnancy and 42 d post-parturition (D); and (3) rats undernourished for 21 d post-parturition and then given a protein diet from days 22 to 42 (DR). The myenteric and submucosal plexuses were evaluated by double labeling by immunohistochemical methods for P2X(2) receptor, NOS, ChAT, calbindin and calretinin. RESULTS: We found similar P2X(2) receptor immunoreactivity in the cytoplasm and surface membranes of myenteric and submucosal neurons from the N, D and DR groups. Double labeling of the myenteric plexus demonstrated that approximately 100% of NOS-IR, calbindin-IR, calretinin-IR and ChAT-IR neurons in all groups also expressed the P2X(2) receptor. In the submucosal plexus, the calretinin-IR, ChAT-IR and calbindinIR neurons were nearly all immunoreactive for the P2X(2) receptor. In the myenteric plexus, there was a 19% increase in numbers per cm(2) for P2X(2) receptor-IR neurons, 64% for NOS-IR, 84% for calretinin-IR and 26% for ChAT-IR neurons in the D group. The spatial density of calbindin-IR neurons, however, did not differ among the three groups. The submucosal neuronal density increased for calbindin-IR, calretinin-IR and ChAT-IR neurons. The average size of neurons in the myenteric plexus neurons in the D group was less than that in the controls and, in the re-fed rats; there was a 34% reduction in size only for the calretinin-IR neurons. CONCLUSION: This work demonstrates that expression of the P2X(2) receptor is present in inhibitory, intrinsic primary afferent, cholinergic secretomotor and vasomotor neurons. Undernutrition affected P2X(2) receptor expression in the submucosal plexus, and neuronal and size. These changes were rescued in the re-fed rats. (C) 2010 Baishideng. All rights reserved.
Resumo:
Background: Several plasma membrane transporters have been shown to mediate the cellular influx and/or efflux of iodothyronines, including the sodium-independent organic anion co-transporting polypeptide 1 (OATP1), the sodium taurocholate co-transporting polypeptide (NTCP), the L-type amino acid transporter 1 (LAT1) and 2 (LAT2), and the monocarboxylate transporter 8 (MCT8). The aim of this study was to investigate if the mRNAs of these transporters were expressed and regulated by thyroid hormone (TH) in mouse calvaria-derived osteoblastic MC3T3-E1 cells and in the fetal and postnatal bones of mice. Methods: The mRNA expression of the iodothyronine transporters was investigated with real-time polymerase chain reaction analysis in euthyroid and hypothyroid fetuses and litters of mice and in MC3T3-E1 cells treated with increasing doses of triiodothyronine (T(3); 10(-10) to 10(-6) M) or with 10(-8) M T(3) for 1-9 days. Results: MCT8, LAT1, and LAT2 mRNAs were detected in fetal and postnatal femurs and in MC3T3-E1 cells, while OATP1 and NTCP mRNAs were not. LAT1 and LAT2 mRNAs were not affected by TH status in vivo or in vitro or by the stage of bone development or osteoblast maturation (analyzed by the expression of osteocalcin and alkaline phosphatase, which are key markers of osteoblastic differentiation). In contrast, the femoral mRNA expression of MCT8 decreased significantly during post-natal development, whereas MCT8 mRNA expression increased as MC3T3-E1 cells differentiated. We also showed that MCT8 mRNA was up-regulated in the femur of hypothyroid animals, and that it was down-regulated by treatment with T(3) in MC3T3-E1 cells. Conclusions: This is the first study to demonstrate the mRNA expression of LAT1, LAT2, and MCT8 in the bone tissue of mice and in osteoblast-like cells. In addition, the pattern of MCT8 expression observed in vivo and in vitro suggests that MCT8 may be important to modulate TH effects on osteoblast differentiation and on bone development and metabolism.
Resumo:
This work aimed to evaluate cardiac morphology/function and histological changes induced by bone marrow cells (BMCs) and cultured mesenchymal stem cells (MSCs) injected at the myocardium of spontaneously hypertensive rats (SHR) submitted to surgical coronary occlusion. Female syngeneic adult SHR, submitted (MI) or not (C) to coronary occlusion, were treated 24 h later with in situ injections of normal medium (NM), or with MSCs (MSC) or BMCs (BM) from male rats. The animals were evaluated after 1 and 30 days by echocardiography, histology of heart sections and PCR for the Y chromosome. Improved ejection fraction and reduced left ventricle infarcted area were observed in MSC rats as compared to the other experimental groups. Treated groups had significantly reduced lesion tissue score, increased capillary density and normal (not-atrophied) myocytes, as compared to NM and C groups. The survival rate was higher in C, NM and MSC groups as compared to MI and BM groups. In situ injection of both MSCs and BMCs resulted in improved cardiac morphology, in a more physiological model of myocardial infarction represented by surgical coronary occlusion of spontaneously hypertensive rats. Only treatment with MSCs, however, ameliorated left ventricle dysfunction, suggesting a positive role of these cells in heart remodeling in infarcted hypertensive subjects.