16 resultados para Variational methods for second-order elliptic equations
Resumo:
Using a combination of several methods, such as variational methods. the sub and supersolutions method, comparison principles and a priori estimates. we study existence, multiplicity, and the behavior with respect to lambda of positive solutions of p-Laplace equations of the form -Delta(p)u = lambda h(x, u), where the nonlinear term has p-superlinear growth at infinity, is nonnegative, and satisfies h(x, a(x)) = 0 for a suitable positive function a. In order to manage the asymptotic behavior of the solutions we extend a result due to Redheffer and we establish a new Liouville-type theorem for the p-Laplacian operator, where the nonlinearity involved is superlinear, nonnegative, and has positive zeros. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A Nonlinear Programming algorithm that converges to second-order stationary points is introduced in this paper. The main tool is a second-order negative-curvature method for box-constrained minimization of a certain class of functions that do not possess continuous second derivatives. This method is used to define an Augmented Lagrangian algorithm of PHR (Powell-Hestenes-Rockafellar) type. Convergence proofs under weak constraint qualifications are given. Numerical examples showing that the new method converges to second-order stationary points in situations in which first-order methods fail are exhibited.
Resumo:
This paper is concerned with the existence of solutions for the quasilinear problem {-div(vertical bar del u vertical bar(N-2) del u) + vertical bar u vertical bar(N-2) u = a(x)g(u) in Omega u = 0 on partial derivative Omega, where Omega subset of R(N) (N >= 2) is an exterior domain; that is, Omega = R(N)\omega, where omega subset of R(N) is a bounded domain, the nonlinearity g(u) has an exponential critical growth at infinity and a(x) is a continuous function and changes sign in Omega. A variational method is applied to establish the existence of a nontrivial solution for the above problem.
Resumo:
We consider a certain type of second-order neutral delay differential systems and we establish two results concerning the oscillation of solutions after the system undergoes controlled abrupt perturbations (called impulses). As a matter of fact, some particular non-impulsive cases of the system are oscillatory already. Thus, we are interested in finding adequate impulse controls under which our system remains oscillatory. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A technique to calculate the current waveform for both close-up and remote short-circuit faults on DC supplied railways and subways is presented. Exact DC short-circuit current calculation is best performed by sophisticated computer transient simulations. However, an accurate simplified calculation method based on second-order approximation which can be easily executed with the help of a calculator or a spreadsheet program is proposed.
Resumo:
This paper proves the existence of nontrivial solution for a class of quasilinear systems oil bounded domains in R(N), N >= 2, whose nonlinearity has a double criticality. The proof is based oil a linking theorem without the Palais-Smale condition.
Resumo:
We study the reconstruction of visual stimuli from spike trains, representing the reconstructed stimulus by a Volterra series up to second order. We illustrate this procedure in a prominent example of spiking neurons, recording simultaneously from the two H1 neurons located in the lobula plate of the fly Chrysomya megacephala. The fly views two types of stimuli, corresponding to rotational and translational displacements. Second-order reconstructions require the manipulation of potentially very large matrices, which obstructs the use of this approach when there are many neurons. We avoid the computation and inversion of these matrices using a convenient set of basis functions to expand our variables in. This requires approximating the spike train four-point functions by combinations of two-point functions similar to relations, which would be true for gaussian stochastic processes. In our test case, this approximation does not reduce the quality of the reconstruction. The overall contribution to stimulus reconstruction of the second-order kernels, measured by the mean squared error, is only about 5% of the first-order contribution. Yet at specific stimulus-dependent instants, the addition of second-order kernels represents up to 100% improvement, but only for rotational stimuli. We present a perturbative scheme to facilitate the application of our method to weakly correlated neurons.
Resumo:
In this paper we establish the existence of standing wave solutions for quasilinear Schrodinger equations involving critical growth. By using a change of variables, the quasilinear equations are reduced to semilinear one. whose associated functionals are well defined in the usual Sobolev space and satisfy the geometric conditions of the mountain pass theorem. Using this fact, we obtain a Cerami sequence converging weakly to a solution v. In the proof that v is nontrivial, the main tool is the concentration-compactness principle due to P.L. Lions together with some classical arguments used by H. Brezis and L. Nirenberg (1983) in [9]. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This letter presents pseudolikelihood equations for the estimation of the Potts Markov random field model parameter on higher order neighborhood systems. The derived equation for second-order systems is a significantly reduced version of a recent result found in the literature (from 67 to 22 terms). Also, with the proposed method, a completely original equation for Potts model parameter estimation in third-order systems was obtained. These equations allow the modeling of less restrictive contextual systems for a large number of applications in a computationally feasible way. Experiments with both simulated and real remote sensing images provided good results.
Resumo:
This paper proves the multiplicity of positive solutions for the following class of quasilinear problems: {-epsilon(p)Delta(p)u+(lambda A(x) + 1)vertical bar u vertical bar(p-2)u = f(u), R(N) u(x)>0 in R(N), where Delta(p) is the p-Laplacian operator, N > p >= 2, lambda and epsilon are positive parameters, A is a nonnegative continuous function and f is a continuous function with subcritical growth. Here, we use variational methods to get multiplicity of positive solutions involving the Lusternick-Schnirelman category of intA(-1)(0) for all sufficiently large lambda and small epsilon.
Resumo:
We consider the Dirichlet problem for the equation -Delta u = lambda u +/- (x, u) + h(x) in a bounded domain, where f has a sublinear growth and h is an element of L-2. We find suitable conditions on f and It in order to have at least two solutions for X near to an eigenvalue of -Delta. A typical example to which our results apply is when f (x, u) behaves at infinity like a(x)vertical bar u vertical bar(q-2)u, with M > a(x) > delta > 0, and I < q < 2. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
We calculate the spectra of produced thermal photons in Au + Au collisions taking into account the nonequilibrium contribution to photon production due to finite shear viscosity. The evolution of the fireball is modeled by second-order as well as by divergence-type 2 + 1 dissipative hydrodynamics, both with an ideal equation of state and with one based on Lattice QCD that includes an analytical crossover. The spectrum calculated in the divergence-type theory is considerably enhanced with respect to the one calculated in the second-order theory, the difference being entirely due to differences in the viscous corrections to photon production. Our results show that the differences in hydrodynamic formalisms are an important source of uncertainty in the extraction of the value of eta/s from measured photon spectra. The uncertainty in the value of eta/s associated with different hydrodynamic models used to compute thermal photon spectra is larger than the one occurring in matching hadron elliptic flow to RHIC data. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of the article is to present a unified approach to the existence, uniqueness and regularity of solutions to problems belonging to a class of second order in time semilinear partial differential equations in Banach spaces. Our results are applied next to a number of examples appearing in literature, which fall into the class of strongly damped semilinear wave equations. The present work essentially extends the results on the existence and regularity of solutions to such problems. Previously, these problems have been considered mostly within the Hilbert space setting and with the main part operators being selfadjoint. In this article we present a more general approach, involving sectorial operators in reflexive Banach spaces. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We construct static and time-dependent exact soliton solutions with nontrivial Hopf topological charge for a field theory in 3 + 1 dimensions with the target space being the two dimensional sphere S(2). The model considered is a reduction of the so-called extended Skyrme-Faddeev theory by the removal of the quadratic term in derivatives of the fields. The solutions are constructed using an ansatz based on the conformal and target space symmetries. The solutions are said self-dual because they solve first order differential equations which together with some conditions on the coupling constants, imply the second order equations of motion. The solutions belong to a sub-sector of the theory with an infinite number of local conserved currents. The equation for the profile function of the ansatz corresponds to the Bogomolny equation for the sine-Gordon model.
Resumo:
In this paper, we use Nuclear Magnetic Resonance (NMR) to write electronic states of a ferromagnetic system into high-temperature paramagnetic nuclear spins. Through the control of phase and duration of radio frequency pulses, we set the NMR density matrix populations, and apply the technique of quantum state tomography to experimentally obtain the matrix elements of the system, from which we calculate the temperature dependence of magnetization for different magnetic fields. The effects of the variation of temperature and magnetic field over the populations can be mapped in the angles of spin rotations, carried out by the RF pulses. The experimental results are compared to the Brillouin functions of ferromagnetic ordered systems in the mean field approximation for two cases: the mean field is given by (i) B = B(0) + lambda M and (ii) B = B(0) + lambda M + lambda`M(3), where B(0) is the external magnetic field, and lambda, lambda` are mean field parameters. The first case exhibits second order transition, whereas the second case has first order transition with temperature hysteresis. The NMR simulations are in good agreement with the magnetic predictions.