198 resultados para POLY(ANHYDRIDE) NANOPARTICLES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(ethylene glycol) decorated poly( methyl methacrylate) particles were synthesized by means of emulsion polymerization using poly(ethylene glycol) sorbitan monolaurate (Tween-20) as surfactant. PMMA/PEG particles presented mean diameter (195 +/- 15) nm, indicating narrow size distribution. The adsorption behavior of bovine serum albumin (BSA) and concanavalin A (ConA) onto PMMA/PEG particles was investigated by means of spectrophotometry. Adsorption isotherms obtained for BSA onto PMMA/PEG particles fitted well sigmoidal function, which is typical for multilayer adsorption. Con A adsorbed irreversibly onto PMMA/PEG particles. The efficiency of ConA covered particles to induce dengue virus quick agglutination was evaluated. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the characterization of poly(aniline) (PANI) and poly(methyl methacrylate) (PMMA) coatings obtained by mixing PANI with PMMA aqueous dispersions (latex particles). These dispersions were characterized by using dynamic light scattering for sizing, zeta-potential analysis and thermal analysis. PMMA and PANI/PMMA dispersions show negative charged particles with zeta potential greater than |40| mV, a zeta-average diameter of 64 nm for pure PMMA and a bi-modal particle-size distribution centered at 45 and 120 nm for a mixture with 25% w/w of PANI. Films obtained by casting were characterized by using scanning electron microscopy and they show a conductivity increase upon PANI content reaching a value of 1 mS cm(-1) for a film with 25% w/w of PANI. In addition, Raman spectroscopy have shown the presence of the conducting form of PANI in the films and cyclic voltammetry experiments corroborated that they are electroactive in both acid and neutral solutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study reports on the preparation and testing of a desoxycholate amphotericin B (D-AMB) sustained delivery system based on poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) polymeric blends (Nano-D-AMB) aimed at reducing the number of AMB administrations required to treat mycosis. BALB/c mice were infected with the yeast Paracoccidioides brasiliensis intravenously to mimic the chronic form of paracoccidioidomycosis. At 30 days post-infection, the animals were treated with Nano-D-AMB [6 mg/kg of encapsulated D-AMB, intraperitoneally (ip), interval of 72 h] or D-AMB (2 mg/kg, ip, interval of 24 h). Drug efficacy was investigated by the fungal burden recovery from tissues. Toxicity was assessed by renal and hepatic biochemical parameters, physical appearance of the animals and haematological investigation. The control groups used were non-infected and the infected mice mock treated with PBS. Nano-D-AMB presented results comparable to free D-AMB, with a marked antifungal efficacy. The Nano-D-AMB-treated group presented lower loss of body weight and absence of stress sign (piloerection and hypotrichosis) observed after D-AMB treatment. No renal [blood urea nitrogen (BUN), creatinine] or hepatic (pyruvic and oxalacetic glutamic transaminases) biochemical abnormalities were found. The micronucleus assay showed no significant differences in both the micronucleus frequency and percentage of polychromatic erythrocytes for Nano-D-AMB, indicating the absence of genotoxicity and cytotoxic effects. The D-AMB-coated PLGA-DMSA nanoparticle showed antifungal efficacy, fewer undesirable effects and a favourable extended dosing interval. Nano-D-AMB comprises an AMB formulation able to lessen the number of drug administrations. Further studies would elucidate whether Nano-D-AMB would be useful to treat systemic fungal infections such as paracoccidioidomycosis, candidiasis, aspergillosis and cryptococcosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background and purpose: The present study reports on the preparation and testing of a sustained delivery system for the immunomodulatory peptide P10 aimed at reducing the in vivo degradation of the peptide and the amount required to elicit a protective immune response against paracoccidioidomycosis. Experimental approach: BALB/c mice were infected with the yeast Paracoccidioides brasiliensis to mimic the chronic form of paracoccidioidomycosis. The animals were treated daily with sulfamethoxazole/trimethoprim alone or combined with peptide P10, either emulsified in Freund`s adjuvant or entrapped in poly(lactic acid-glycolic acid) (PLGA) nanoparticles at different concentrations (1 mu g, 5 mu g, 10 mu g, 20 mu g or 40 mu g center dot 50 mu L-1). Therapeutic efficacy was assessed as fungal burden in tissues and the immune response by quantitative determination of cytokines. Key results: Animals given combined chemotherapy and P10 nanotherapy presented a marked reduction of fungal load in the lungs, compared with the non-treated animals. After 30 days of treatment, P10 entrapped within PLGA (1 mu g center dot 50 mu L-1) was more effective than `free` P10 emulsified in Freund`s adjuvant (20 mu g center dot 50 mu L-1), as an adjuvant to chemotherapy. After treatment for 90 days, the higher doses of P10 entrapped within PLGA (5 or 10 mu g center dot 50 mu L-1) were most effective. Treatment with P10 emulsified in Freund`s adjuvant (20 mu g center dot 50 mu L-1) or P10 entrapped within PLGA (1 mu g center dot 50 mu L-1) were accompanied by high levels of interferon-gamma in lung. Conclusions and implications: Combination of sulfamethoxazole/trimethoprim with the P10 peptide entrapped within PLGA demonstrated increased therapeutic efficacy against paracoccidioidomycosis. P10 incorporation into PLGA nanoparticles dramatically reduced the peptide amount necessary to elicit a protective effect.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reports the preparation and characterization of poly-{trans-[RuCl(2)(vpy)(4)]-styrene-divinylbenzene} and styrene-divinylbenzene-vinylpiridine filled with nanosilver. Theses materials were synthesized by non aqueous polymerization through a chemical reaction using benzoyl peroxide as the initiator. The nanosilver was obtained from chemical reduction using NaBH(4) as reducing agent and sodium citrate as stabilizer. The nanometric dimension of nanosilver was monitored by UV-visible and confirmed through TEM. The morphology was characterized by SEM and the thermal properties were done by TGA and DSC. The antimicrobial action of the polymers impregnated with nanosilver was evaluated using both microorganisms, Staphylococcus aureus and Escherichia coli. The antimicrobial activity of the poly-{trans-[RuCl(2)(vpy)(4)]-styrene-divinylbenzene} filled with nanosilver was confirmed by the presence of an inhibition halo of the bacterial growth in seeded culture media, but was not confirmed to the styrene-divinylbenzene-vinylpiridine. The present work suggest that trans - [RuCl(2)(vpy)(4)] complex facilitate the release of silver ion from the media.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogels micro, sub-micro and nanoparticles are of great interest for drug encapsulation and delivery or as embolotherapic agents. In this work it is described the preparation of nano and sub-microparticles of pre-formed, high molecular weight and monomer free poly(N-vinyl-2-pyrrolidone) encapsulated inside the core of lecithin vesicles. The hydrogel particles are formed with a very narrow diameter distribution, of about 800 nm, and a moderate swelling ratio, of approximately 10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of constitutional dynamic chemistry (CDC) based on the control of non-covalent interactions in supramolecular structures is promising for having a large impact on nanoscience and nanotechnology if adequate nanoscale manipulation methods are used. In this study, we demonstrate that the layer-by-layer (LbL) technique may be used to produce electroactive electrodes with ITO coated by tetrasulfonated nickel phthalocyanine (NiTsPc) alternated with poly(allylamine hydrochloride) (PAH) incorporating gold nanoparticles (AuNP), in which synergy has been achieved in the interaction between the nanoparticles and NiTsPc. The catalytic activity toward hydrogen peroxide (H(2)O(2)) in multilayer films was investigated using cyclic voltammetry, where oxidation of H(2)O(2) led to increased currents in the PAH-AuNP/NiTsPc films for the electrochemical processes associated with the phthalocyanine ring and nickel at 0.52 and 0.81 V vs. SCE, respectively, while for PAH/NiTsPc films (without AuNP) only the first redox process was affected. In control experiments we found out that the catalytic activity was not solely due to the presence of AuNP, but rather to the nanoparticles inducing NiTsPc supramolecular structures that favored access to their redox sites, thus yielding strong charge transfer. The combined effects of NiTsPc and AuNP, which could only be observed in nanostructured LbL films, point to another avenue to pursue within the CDC paradigm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two series of poly(L,L-lactide-b-ethylene glycol-b-L,L-lactide) copolymers, PLA-PEO-PLA, were synthesized by polymerization Of L,L-lactide using a dihydroxy-terminated poly(ethylene glycol) (PEG) (M-n = 4000 or 600 g/mol) as coinitiator and stannous 2-ethylhexanoate, Sn(Oct)(2), as initiator. The synthesized copolymers have shown high stereoregularity as observed by C-13 NMR analyses. The nanoparticles were prepared by using a solvent diffusion method and the self-assemblage process and were characterized by NMR and SEM. It was possible to conclude that the self-assembled particles presented a core-shell structure characterized by a hydrophobic PLA core and a hydrophilic PEG shell, thus the NMR of the aqueous solutions indicated a quasi-solid behavior for the particles` interior. The diameters of the spherical particles as observed by SEM were in the 50-250 nm range, depending on the copolymer composition and the preparation procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One major challenge for the widespread application of direct methanol fuel cells (DMFCs) is to decrease the amount of platinum used in the electrodes, which has motivated a search for novel electrodes containing platinum nanoparticles. In this study, platinum nanoparticles were electrodeposited on layer-by-layer (LbL) films from TiO(2) and poly(vinyl sulfonic) (PVS), by immersing the films into a H(2)PtCl(6) solution and applying a 100 mu A current during different electrode position times. Scanning tunnel microscopy (STM) and atomic force microscopy (AFM) images showed increased platinum particle size and electrode roughness for increasing electrodeposition times. The potentiodynamic profile of the electrodes indicated that oxygen-like species in 0.5 mol L(-1) H(2)SO(4) were formed at less positive potentials for the smallest platinum particles. Electrochemical impedance spectroscopy measurements confirmed the high reactivity for the water dissociation and the large amount of oxygen-like species adsorbed on the smallest platinum nanoparticles. This high oxophilicity of the smallest nanoparticles was responsible for the electrocatalytic activity of Pt-TiO(2)/PVS systems for methanol electrooxidation, according to the Langmuir-Hinshelwood bifunctional mechanism. Significantly, the approach used here combining platinum electrodeposition and LbL matrices allows one to both control the particle size and optimize methanol electrooxidation, being therefore promising for producing membrane-electrode assemblies of DMFCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control of size and shape of metallic nanoparticles is a fundamental goal in nanochemistry, and crucial for applications exploiting nanoscale properties of materials. We present here an approach to the synthesis of gold nanoparticles mediated by glucose oxidase (GOD) immobilized on solid substrates using the Layer-by-Layer (LbL) technique. The LbL films contained four alternated layers of chitosan and poly(styrene sulfonate) (PSS), with GOD in the uppermost bilayer adsorbed on a fifth chitosan layer: (chitosan/PSS)(4)/(chitosan/GOD). The films were inserted into a solution containing gold salt and glucose, at various pHs. Optimum conditions were achieved at pH 9, producing gold nanoparticles of ca. 30 nm according to transmission electron microscopy. A comparative study with the enzyme in solution demonstrated that the synthesis of gold nanoparticles is more efficient using immobilized GOD. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption behavior of several amphiphilic polyelectrolytes of poly(maleic anhydride-alt-styrene) functionalized with naphthyl and phenyl groups, onto amino-terminated silicon wafer has been studied by means of null- ellipsometry, atomic force microscopy (AFM) and contact angle measurements. The maximum of adsorption, Gamma(plateau), varies with the ionic strength, the polyelectrolyte structure and the chain length. Values of Gamma(plateau) obtained at low and high ionic strengths indicate that the adsorption follows the ""screening-reduced adsorption"" regime. Large aggregates were detected in solution by means of dynamic light scattering and fluorescence measurements. However. AFM indicated the formation of smooth layers and the absence of aggregates. A model based on a two-step adsorption behavior was proposed. In the first one, isolated chains in equilibrium with the aggregates in solution adsorbed onto amino-terminated surface. The adsorption is driven by electrostatic interaction between protonated surface and carboxylate groups. This first layer exposes naphtyl or phenyl groups to the solution. The second layer adsorption is now driven by hydrophobic interaction between surface and chains and exposes carboxylate groups to the medium, which repel the forthcoming chain by electrostatic repulsion. Upon drying some hydrophobic naphtyl or phenyl groups might be oriented to the air, as revealed by contact angle measurements. Such amphiphilic polyelectrolyte layers worked well for the building-up of multilayers with chitosan. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of MnO(2) nanoparticles were grown using the layer-by-layer method with poly (diallyldimetylammonium) as the intercalated layer. The film growth was followed by UV-vis, electrochemical quartz crystal microbalance (EQCM), and atomic force microscopy. Linear growth due to electrostatic immobilization of layers was observed up to 30 bilayers, but electrical connectivity was maintained only for 12 MnO(2)/PPDA bilayers. The electrochemical characterization of this film in 1-butyl-2,3-dimethyl-imidazolium (BMMI) bis(trifluoromethanesulfonyl)imide (TFSI) (BMMITFSI) with and without addition of a lithium salt indicated a higher electrochemical response of the nanostructured electrode in the lithium-containing electrolyte. On the basis of EQCM experiments, it was possible to confirm that the charge compensation process is achieved mainly by the TFSI anion at short times (<2 s) and by BMMI and lithium cations at longer times. The fact that large ions like TFSI and BMMI participate in the electroneutrality is attributed to the redox reaction that occurs at the superficial sites and to the high concentration of these species compared to that of lithium cations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to study the effect of the hydrolysis degree (HD) and the concentration (C PVA) of two types of poly (vinyl alcohol) (PVA) and the effect of the type and the concentration of plasticizers on the phase properties of biodegradable films based on blends of gelatin and PVA, using a response-surface methodology. The films were made by casting and the studied properties were their glass (Tg) and melting (Tm) transition temperatures, which were determined by diferential scanning calorimetry (DSC). For the data obtained on the first scan, the fitting of the linear model was statistically significant and predictive only for the second melting temperature. In this case, the most important effect on the second Tm of the first scan was due to the HD of the PVA. In relation to the second scan, the linear model could be fit to Tg data with only two statistically significant parameters. Both the PVA and plasticizer concentrations had an important effect on Tg. Concerning the second Tm of the second scan, the linear model was fit to data with two statistically significant parameters, namely the HD and the plasticizer concentration. But, the most important effect was provoked by the HD of the PVA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyethyleneglycol (PEG) was photooxidized in a photo-Fenton system and results compared with the dark reaction. The products were analysed using GPC and HPLC. In the absence of light, PEG samples needed 490 min to reduce their w by 50%, whereas under UV irradiation, only 10 min were necessary. The exponential decay of w with a concomitant increase in polydispersity and number of average chain scission, characterized a random chain scission mechanism. The degradation products of PEG in both systems showed the presence of lower molecular weight products, including smaller ethyleneglycols and formic acid. The mechanism involves consecutive processes, were the larger ethyleneglycols give rise, successively, to smaller ones. This suggests that the mechanism involves successive scissions of the polymer chain. Irradiated samples decomposed faster than those kept in the dark This study proves that the foto-Fenton method associated with UV-light is a good reactant for PEG photodegradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general mechanism for the photodegradation of polyethyleneglycol (PEG) by H2O2/UV was determined studying the photooxidation of small model molecules, like low molecular weight ethyleneglycols (tetra-, tri-, di-, and ethyleneglycol). After 30 min of irradiation the average molar mass (Mw) of the degradated PEG, analysed by GPC, fall to half of its initial value, with a concomitant increase in polydispersitivity and number of average chain scission (S), characterizing a random chain scission process yielding oligomers and smaller size ethyleneglycols. HPLC analysis of the photodegradation of the model ethyleneglycols proved that the oxidation mechanism involved consecutive reactions, where the larger ethyleneglycols gave rise, successively, to smaller ones. The photodegradation of ethyleneglycol lead to the formation of low molecular weight carboxylic acids, like glycolic, oxalic and formic acids.