19 resultados para Ionic-conductivity
Resumo:
This work report results from proton nuclear magnetic resonance (NMR), continuous-wave (CW-EPR) and pulsed electron paramagnetic resonance (P-EPR) and complex impedance spectroscopy of gelatin-based polymer gel electrolytes containing acetic acid. cross-linked with formaldehyde and plasticized with glycerol. Ionic conductivity of 2 x 10(-5) S/cm was obtained at room temperature for samples prepared with 33 wt% of acetic acid. Proton ((1)H) line shapes and spin-lattice relaxation times were measured as a function of temperature. The NMR results show that the proton mobility is dependent on acetic acid content in the plasticized polymer gel electrolytes. The CW-EPR spectra, which were carried out in samples doped with copper perchlorate, indicate the presence of the paramagnetic Cu(2+) ions in axially distorted sites. The P-EPR technique, known as electron spin echo envelope modulation (ESEEM), was employed to show the involvement of both, hydrogen and nitrogen atoms, in the copper complexation of the gel electrolyte. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Nuclear Magnetic Resonance spectroscopy (NMR) and complex impedance spectroscopy have been used to study gelatin-based polymer electrolytes plasticized with glycerol and containing lithium perchlorate. The studied samples were prepared with salt concentration of 7.9 wt% and 10.3 wt%. Ionic conductivity of about 10(-5) S/cm was obtained at room temperature for both samples. Lithium (Li-7) and proton (H-1) lineshapes and spin-lattice relaxation times were measured as a function of temperature. The Li-7 NMR relaxation results indicate that the ionic mobility in this system is comparable to those found in other plasticized polymer electrolytes.
Resumo:
The ionic liquids (ILs) 1-ethoxyethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [EtO-(CH(2))(2)MMI][Tf(2)N], and N-(ethoxyethyl)-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [EtO(CH(2))(2)MMor][Tf(2)N] were synthesized, and relevant properties, such as thermal stability, density, viscosity, electrochemical behavior, ionic conductivity, and self-diffusion coefficients for both ionic species, were measured and compared with those of their alkyl counterparts, 1-n-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [BMMI][Tf(2)N], and N-n-butyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide,[BMP][Tf(2)N] and N-n-butyl-N-methylmorpholinium bis(trilfuoromethanesulfonyl)imide [BMMor][Tf(2)N][. This comparison was done to evaluate the effects caused by the presence of the ether bond in either the side chain or in the organic cation ring. The salt, LiTf(2)N, was added to the systems to estimate IL behavior with regard to lithium cation transport. Pure [EtO(CH(2))(2)MMI][Tf(2)N] and their LiTf(2)N solutions showed low viscosity and the highest conductivity among the ILs studied. The H(R) (AC conductivity/NMR calculated conductivity ratio) values showed that, after addition of LiTf(2)N, ILs containing the ether bond seemed to have a greater number of charged species. Structural reasons could explain these high observed HR values for [EtO(CH(2))(2)MMor][Tf(2)N].
Resumo:
Lithium salt solutions of Li(CF3SO2)(2)N, LiTFSI, in a room-temperature ionic liquid (RTIL), 1-butyl-2,3-dimethyl-imidazolium cation, BMMI, and the (CF3SO2)(2)N-, bis(trifluoromethanesulfonyl)imide anion, [BMMI][TFSI], were prepared in different concentrations. Thermal properties, density, viscosity, ionic conductivity, and self-diffusion coefficients were determined at different temperatures for pure [BMMI][TFSI] and the lithium solutions. Raman spectroscopy measurements and computer simulations were also carried out in order to understand the microscopic origin of the observed changes in transport coefficients. Slopes of Walden plots for conductivity and fluidity, and the ratio between the actual conductivity and the Nernst-Einstein estimate for conductivity, decrease with increasing LiTFSI content. All of these studies indicated the formation of aggregates of different chemical nature, as it is corroborated by the Raman spectra. In addition, molecular dynamics (MD) simulations showed that the coordination of Li+ by oxygen atoms of TFSI anions changes with Li+ concentration producing a remarkable change of the RTIL structure with a concomitant reduction of diffusion coefficients of all species in the solutions.
Resumo:
Ce(0.8)SM(0.2)O(1.9) and CeO(2) nanomaterials were prepared by a solution technique to produce an ultrafine particulate material with high sinterability. In this work, the structural characteristics, the photoluminescent behavior and the ionic conductivity of the synthesized materials are focused. The thermally decomposed material consists of less than 10 nm in diameter nanoparticles. The Raman spectrum of pure CeO(2) consists of a single triple degenerate F(2g) model characteristic of the fluorite-like structure. The full width at half maximum of this band decreases linearly with increasing calcination temperature. The photoluminescence spectra show a broadened emission band assigned to the ligand-to-metal charge-transfer states O -> Ce(4+). The emission spectra of the Ce(0.8)Sm(0.2)O(1.9) specimens present narrow bands arising from the 4G(5/2) -> (6)H(J) transitions (J = 5/2, 7/2, 9/2 and 11/2) of Sm(3+) ion due to the efficient energy transfer from the O -> Ce(4+) transitions to the emitter 4G(5/2) level. The ionic conductivity of sintered specimens shows a significant dependence on density. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nickel catalysts with a load of 5 wt% Ni, supported on pure ZrO(2) and ZrO(2) stabilized with 4, 8 and 14 mol% CaO, were prepared by the polymerization method. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction with hydrogen (TPR-H(2)), specific surface area (BET) and impedance spectroscopy (IS) and tested in the carbon dioxide reforming of methane. The XRD patterns showed the presence of the oxide precursor (NiO) and the tetragonal phase of CaO-ZrO(2) solid solutions. According to the TPR-H(2) analysis, the reduction of various NiO species was influenced by the support composition. The electrical properties of the support have a proportional effect on the catalytic activities. Catalytic tests were done at 800 degrees C for 6 h and the composition of the gaseous products and the catalytic conversion depended on the CaO-ZrO(2) solid solution composition and its influence on supported NiO species. A direct relation was found between the variation in the electrical conductivity of the support, the nickel species supported on it and the performance in the catalytic tests. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
6 x 8cm(2) electrochromic devices (ECDs) with the configuration K-glass/EC-layer/electrotype/ion-storage (IS) layer/K-glass, have been assembled using Nb2O5:Mo EC layers, a (CeO2)(0.81)-TiO2 IS-layer and a new gelatin electrolyte containing Li+ ions. The structure of the electrolyte is X-ray amorphous. Its ionic conductivity passed by a maximum of 1.5 x 10(-5) S/CM for a lithium concentration of 0.3g/15ml. The value increases with temperature and follows an Arrhenius law with an activation energy of 49.5 kJ/mol. All solid-state devices show a reversible gray coloration, a long-term stability of more than 25,000 switching cycles (+/- 2.0 V/90 s), a transmission change at 550 nm between 60% (bleached state) and 40% (colored state) corresponding to a change of the optical density (Delta OD = 0. 15) with a coloration efficiency increasing from 10cm(2)/C (initial cycle) to 23cm(2)/C (25,000th cycle). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the preparation and characterization of a solid polymer electrolyte based on amylopectin-rich starch plasticized with glycerol. The samples were characterized through ionic conductivity (sigma) measurements, scanning electron microscopy, thermal analysis, and spectroscopy in the UV-Vis-NIR region. The results showed that the highest sigma (1.1 x 10(-4) Scm(-1) at 30 degrees C) was obtained for the sample with n = [O]/[Li] = 6.5 ratio. In addition, the samples plasticized with 30-35 wt.% of glycerol presented high ionic conductivity, transparency and conduction stability. The ionic conductivity measurements as a function of lithium salt contents showed a maximum for n=6.5. The ionic conductivity as a function of time for amylopectin-rich starch plasticized with 30 wt.% of glycerol and containing [O]/[Li] = 10 showed conduction stability over 6 months (sigma similar to 3.01 x 10(-5) S cm(-1)). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
MgO based refractory castables draw wide technological interest because they have the versatility and installation advantages of monolithic refractories with intrinsic MgO properties, such as high refractoriness and resistance to basic slag corrosion. Nevertheless, MgO easily reacts with water to produce Mg(OH)(2), which is followed by a large volumetric expansion, limiting its application in refractory castables. In order to develop solutions to minimize this effect, a better understanding of the main variables involved in this reaction is required. In this work, the influence of temperature, as well as the impact of the chemical equilibrium shifting (known as the common-ion effect), on MgO hydration was evaluated. Ionic conductivity measurements at different temperatures showed that the MgO hydration reaction is accelerated with increasing temperature. Additionally, different compounds were added to evaluate their influence on the reaction rate. Among them, CaCl(2) delayed the reaction, whereas KOH showed an opposite behavior. MgCl(2) and MgSO(4) presented similar results and two other distinct effects, reaction delay and acceleration, which depended on their concentration in the suspensions. The results were evaluated by considering the kinetics and the thermodynamics of the reaction, and the mechanical damages in the samples that was caused by the hydration reaction. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
New types of polymer electrolytes based on agar have been prepared and characterized by impedance spectroscopy, X-ray diffraction measurements, UV-vis spectroscopy and scanning electronic microscopy (SEMI). The best ionic conductivity has been obtained for the samples containing a concentration of 50 wt.% of acetic acid. As a function of the temperature the ionic conductivity exhibits an Arrhenius behavior increasing from 1.1 x 10(-4) S/cm at room temperature to 9.6 x 10(-4) S/cm at 80 degrees C. All the samples showed more than 70% of transparency in the visible region of the electromagnetic spectrum, a very homogeneous surface and a predominantly amorphous structure. All these characteristics imply that these polymer electrolytes can be applied in electrochromic devices. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Gelatin is a cheap and abundant natural product with very good biodegradation properties and can be used to obtain acetic acid or LiClO(4)-based gel polymer electrolytes (GPEs) with high ionic conductivity and good stability. This article presents results of GPEs obtained by the plasticization of gelatin and addition of LiBF(4), where the optimization of the system was achieved by using a factorial design type 22 with two variables: glycerol and LiBF(4). From this analysis it was stated that the effect of glycerol as a plasticizer on the ionic conductivity results is much more important than the effect obtained by varying the lithium salt content or the effect of the interaction of both variables. Also all the samples were characterized by X-ray diffraction measurements, UV-vis-NIR spectroscopy and scanning electron microscopy (SEM) and impedance spectroscopy. The ionic conductivity results of all analyzed samples as a function of temperature obey predominantly an Arrhenius relationship and the samples are stable up to 160 degrees C. Good conductivity results combined with transparency and good adhesion to the electrodes have shown that gelatin-based GPEs are very promising materials to be used as solid electrolytes in electrochromic devices. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Pectin is a natural polymer present in plants and, as all natural polymers has biodegradation properties. Chemically, pectin is a polysaccharide composed of a linear chain of 1 -> 4 linked galacturonic acids, which is esterified with methanol at 80%. The pectin-based gel electrolytes in a transparent film form were obtained by a plasticization process with glycerol and addition of LiClO(4). The films showed good ionic conductivity results, which increased from 10(-5) S/cm for the samples with 37 wt.% of glycerol to 4.7 x 10(-4) S/cm at room temperature for the sample with 68 wt.% of glycerol. The electrochemical behaviors of the samples were studied by electrochemical impedance spectroscopy (EIS), and Nyquist graphs are showed and discussed. The obtained pectin-based samples also presented good adherence to the glass, flexibility, homogeneity (SEM) and transparency (about 70% in the vis) properties. They are good candidates to be applied as gel electrolytes in electrochromic devices. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Transport coefficients have been measured as a function of the concentration of sulfur dioxide, SO(2), dissolved in 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)-imide, [BMMI][Tf(2)N], as well as in its lithium salt solution, Li[Tf(2)N]. The SO(2) reduces viscosity and density and increases conductivity and diffusion coefficients in both the neat [BMMI] [Tf(2)N] and the [BMMI][Tf(2)N]-Li[Tf(2)N] solution. The conductivity enhancement is not assigned to a simple viscosity effect; the weakening of ionic interactions upon SO(2) addition also plays a role. Microscopic details of the SO(2) effect were unraveled using Raman spectroscopy and molecular dynamics (MD) simulations. The Raman spectra suggest that the Li(+)-[Tf(2)N] interaction is barely affected by SO(2), and the SO(2)-[Tf(2)N] interaction is weaker than previously observed in an investigation of an ionic liquid containing the bromide anion. Transport coefficients calculated by MD simulations show the same trend as the experimental data with respect to SO(2) content. The MD simulations provide structural information on SO(2) molecules around [Tf(2)N], in particular the interaction of the sulfur atom of SO(2) with oxygen and fluorine atoms of the anion. The SO(2)-[BMMI] interaction is also important because the [BMMI] cations with above-average mobility have a larger number of nearest-neighbor SO(2) molecules.
Resumo:
Successful coupling of electrochemical preconcentration (EPC) to capillary electrophoresis (CE) with contactless conductivity detection (C(4)D) is reported for the first time. The EPC-CE interface comprises a dual glassy carbon electrode (GCE) block, a spacer and an upper block with flow inlet and outlet, pseudo-reference electrode and a fitting for the CE silica column, consisting of an orifice perpendicular to the surface of a glassy carbon electrode with a bushing inside to ensure a tight press fit. The end of the capillary in contact with the GCE is slant polished, thus defining a reproducible distance from the electrode surface to the column bore. First results with EPC-CE-C(4)D are very promising, as revealed by enrichment factors of two orders of magnitude for Tl, Cu, Pb and Cd ion peak area signals. Detection limits for 10 min deposition time fall around 20 nmol L(-1) with linear calibration curves over a wide range. Besides preconcentration, easy matrix exchange between accumulation and stripping/injection favors procedures like sample cleanup and optimization of pH, ionic strength and complexing power. This was demonstrated for highly saline samples by using a low conductivity buffer for stripping/injection to improve separation and promote field-enhanced sample stacking during electromigration along the capillary. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The viscosity of ionic liquids based on quaternary ammonium cations is reduced when one of the alkyl chains is replaced by an alkoxy chain (Zhou et al. Chem. Eur. J. 2005, 11, 752.). A microscopic picture of the role played by the ether function in decreasing the viscosity of quaternary ammonium ionic liquids is provided here by molecular dynamics (MD) simulations. A model for the ionic liquid N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, MOENM(2)E TFSI, is compared to the tetraalky-lammonium counterpart. The alkoxy derivative has lower viscosity, higher ionic diffusion coefficients, and higher conductivity than the tetraalkyl system at the same density and temperature. A clear signature of the ether function on the liquid structure is observed in cation-cation correlations, but not in anion-anion or anion-cation correlations. In both the alkyl and the alkoxy ionic liquids, there is aggregation of long chains of neighboring cations within micelle-like structures. The MD simulations indicate that the less effective assembly between the more flexible alkoxy chains, in comparison to alkyl chains, is the structural reason for higher ionic mobility in MOENM(2)E TFSI.