Transport coefficients, Raman spectroscopy, and computer simulation of lithium salt solutions in an ionic liquid


Autoria(s): MONTEIRO, Marcelo J.; BAZITO, Fernanda F. C.; SIQUEIRA, Leonardo J. A.; RIBEIRO, Mauro C. C.; TORRESI, Roberto M.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2008

Resumo

Lithium salt solutions of Li(CF3SO2)(2)N, LiTFSI, in a room-temperature ionic liquid (RTIL), 1-butyl-2,3-dimethyl-imidazolium cation, BMMI, and the (CF3SO2)(2)N-, bis(trifluoromethanesulfonyl)imide anion, [BMMI][TFSI], were prepared in different concentrations. Thermal properties, density, viscosity, ionic conductivity, and self-diffusion coefficients were determined at different temperatures for pure [BMMI][TFSI] and the lithium solutions. Raman spectroscopy measurements and computer simulations were also carried out in order to understand the microscopic origin of the observed changes in transport coefficients. Slopes of Walden plots for conductivity and fluidity, and the ratio between the actual conductivity and the Nernst-Einstein estimate for conductivity, decrease with increasing LiTFSI content. All of these studies indicated the formation of aggregates of different chemical nature, as it is corroborated by the Raman spectra. In addition, molecular dynamics (MD) simulations showed that the coordination of Li+ by oxygen atoms of TFSI anions changes with Li+ concentration producing a remarkable change of the RTIL structure with a concomitant reduction of diffusion coefficients of all species in the solutions.

Identificador

JOURNAL OF PHYSICAL CHEMISTRY B, v.112, n.7, p.2102-2109, 2008

1520-6106

http://producao.usp.br/handle/BDPI/31336

10.1021/jp077026y

http://dx.doi.org/10.1021/jp077026y

Idioma(s)

eng

Publicador

AMER CHEMICAL SOC

Relação

Journal of Physical Chemistry B

Direitos

restrictedAccess

Copyright AMER CHEMICAL SOC

Palavras-Chave #N-PROPYLPYRROLIDINIUM BIS(TRIFLUOROMETHANESULFONYL)IMIDE #PHYSICOCHEMICAL PROPERTIES #1-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE #MOLECULAR-DYNAMICS #ELECTROLYTE #DIFFUSION #CATION #STABILITY #ANIONS #FIELD #Chemistry, Physical
Tipo

article

original article

publishedVersion