11 resultados para Computer supported collaborative blended learning
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
The continuous advancement in computing, together with the decline in its cost, has resulted in technology becoming ubiquitous (Arbaugh, 2008, Gros, 2007). Technology is growing and is part of our lives in almost every respect, including the way we learn. Technology helps to collapse time and space in learning. For example, technology allows learners to engage with their instructors synchronously, in real time and also asynchronously, by enabling sessions to be recorded. Space and distance is no longer an issue provided there is adequate bandwidth, which determines the most appropriate format such text, audio or video. Technology has revolutionised the way learners learn; courses are designed; and ‘lessons’ are delivered, and continues to do so. The learning process can be made vastly more efficient as learners have knowledge at their fingertips, and unfamiliar concepts can be easily searched and an explanation found in seconds. Technology has also enabled learning to be more flexible, as learners can learn anywhere; at any time; and using different formats, e.g. text or audio. From the perspective of the instructors and L&D providers, technology offers these same advantages, plus easy scalability. Administratively, preparatory work can be undertaken more quickly even whilst student numbers grow. Learners from far and new locations can be easily accommodated. In addition, many technologies can be easily scaled to accommodate new functionality and/ or other new technologies. ‘Designing and Developing Digital and Blended Learning Solutions’ (5DBS), has been developed to recognise the growing importance of technology in L&D. This unit contains four learning outcomes and two assessment criteria, which is the same for all other units, besides Learning Outcome 3 which has three assessment criteria. The four learning outcomes in this unit are: • Learning Outcome 1: Understand current digital technologies and their contribution to learning and development solutions; • Learning Outcome 2: Be able to design blended learning solutions that make appropriate use of new technologies alongside more traditional approaches; • Learning Outcome 3: Know about the processes involved in designing and developing digital learning content efficiently and what makes for engaging and effective digital learning content; • Learning Outcome 4: Understand the issues involved in the successful implementation of digital and blended learning solutions. Each learning outcome is an individual chapter and each assessment unit is allocated its own sections within the respective chapters. This first chapter addresses the first learning outcome, which has two assessment criteria: summarise the range of currently available learning technologies; critically assess a learning requirement to determine the contribution that could be made through the use of learning technologies. The introduction to chapter one is in Section 1.0. Chapter 2 discusses the design of blended learning solutions in consideration of how digital learning technologies may support face-to-face and online delivery. Three learning theory sets: behaviourism; cognitivism; constructivism, are introduced, and the implication of each set of theory on instructional design for blended learning discussed. Chapter 3 centres on how relevant digital learning content may be created. This chapter includes a review of the key roles, tools and processes that are involved in developing digital learning content. Finally, Chapter 4 concerns delivery and implementation of digital and blended learning solutions. This chapter surveys the key formats and models used to inform the configuration of virtual learning environment software platforms. In addition, various software technologies which may be important in creating a VLE ecosystem that helps to enhance the learning experience, are outlined. We introduce the notion of personal learning environment (PLE), which has emerged from the democratisation of learning. We also review the roles, tools, standards and processes that L&D practitioners need to consider within a delivery and implementation of digital and blended learning solution.
Resumo:
Chapter 6 concerns ‘Designing and developing digital and blended learning solutions’, however, despite its title, it is not aimed at developing L&D professionals to be technologists (in so much as how Chapter 3 is not aimed at developing L&D professionals to be accounting and financial experts). Chapter 6 is about developing L&D professionals to be technology savvy. In doing so, I adopt a culinary analogy in presenting this chapter, where the most important factors in creating a dish (e.g. blended learning), are the ingredients and the flavour each of it brings. The chapter first explores the typical technologies and technology products that are available for learning and development i.e. the ingredients. I then introduce the data Format, Interactivity/ Immersion, Timing, Content (creation and curation), Connectivity and Administration (FITCCA) framework, that helps L&D professionals to look beyond the labels of technologies in identifying what the technology offers, its functions and features, which is analogous to the ‘flavours’ of the ingredients. The next section discusses some multimedia principles that are important for L&D professionals to consider in designing and developing digital learning solutions. Finally, whilst there are innumerable permutations of blended learning, this section focuses on the typical emphasis in blended learning and how technology may support such blends.
Strategic Management Simulation as a Blended Learning Dimension: Campus Based Students’ Perspectives
Resumo:
Although business simulations are widely used in management education, there is no consensus about how to optimise their application. Our research explores the use of business simulations as a dimension of a blended learning pedagogic approach for undergraduate business education. Accepting that few best-practice prescriptive models for the design and implementation of simulations in this context have been presented, and that there is little empirical evidence for the claims made by proponents of such models, we address the lacuna by considering business student perspectives on the use of simulations. We then intersect available data with espoused positive outcomes made by the authors of a prescriptive model. We find the model to be essentially robust and offer evidence to support this position. In so doing we provide one of the few empirically based studies to support claims made by proponents of simulations in business education. The research should prove valuable for those with an academic interest in the use of simulations, either as a blended learning dimension or as a stand-alone business education activity. Further, the findings contribute to the academic debate surrounding the use and efficacy of simulation-based training [SBT] within business and management education.
Resumo:
Introduction A computer-based simulation game (CSG) was used for the first time in a final-year undergraduate module. A change management simulation game was used in the seminar classes as a formative exercise that was linked to parts of the students’ summative assessment. The module evaluation suggests that most students learned from using the CSG.
Resumo:
Computer-based simulation games (CSG) are a form of innovation in learning and teaching. CGS are used more pervasively in various ways such as a class activity (formative exercises) and as part of summative assessments (Leemkuil and De Jong, 2012; Zantow et al., 2005). This study investigates the current and potential use of CGS in Worcester Business School’s (WBS) Business Management undergraduate programmes. The initial survey of off-the-shelf simulation reveals that there are various categories of simulations, with each offering varying levels of complexity and learning opportunities depending on the field of study. The findings suggest that whilst there is marginal adoption of the use CSG in learning and teaching, there is significant opportunity to increase the use of CSG in enhancing learning and learner achievement, especially in Level 5 modules. The use of CSG is situational and its adoption should be undertaken on a case-by-case basis. WBS can play a major role by creating an environment that encourages and supports the use of CSG as well as other forms of innovative learning and teaching methods. Thus the key recommendation involves providing module teams further support in embedding and integrating CSG into their modules.
Resumo:
This paper aims to crystallize recent research performed at the University of Worcester to investigate the feasibility of using the commercial game engine ‘Unreal Tournament 2004’ (UT2004) to produce ‘Educational Immersive Environments’ (EIEs) suitable for education and training. Our research has been supported by the UK Higher Education Academy. We discuss both practical and theoretical aspects of EIEs. The practical aspects include the production of EIEs to support high school physics education, the education of architects, and the learning of literacy by primary school children. This research is based on the development of our novel instructional medium, ‘UnrealPowerPoint’. Our fundamental guiding principles are that, first, pedagogy must inform technology, and second, that both teachers and pupils should be empowered to produce educational materials. Our work is informed by current educational theories such as constructivism, experiential learning and socio-cultural approaches as well as elements of instructional design and game principles.
Resumo:
Computer game technology provides us with the tools to create web-based educational materials for autonomous and collaborative learning. At Worcester, we have researched the use of this technology in various educational contexts. This paper reports one such study; the use of the commercial game engine “Unreal Tournament 2004” (UT2004) to produce materials suitable for education of Architects. We map the concepts and principles of Architectural Design onto the affordances (development tools) provided by UT2004, leading to a systematic procedure for the realization of buildings and urban environments using this game engine. A theory for the production of web-based learning materials which supports both autonomous and collaborative learning is developed. A heuristic evaluation of our materials, used with second-year students is presented. Associated web-pages provide on-line materials for delegates.
Resumo:
At a recent conference on games in education, we made a radical decision to transform our standard presentation of PowerPoint slides and computer game demonstrations into a unified whole, inserting the PowerPoint presentation to the computer game. This opened up various questions relating to learning and teaching theories, which were debated by the conference delegates. In this paper, we reflect on these discussions, we present our initial experiment, and relate this to various theories of learning and teaching. In particular, we consider the applicability of “concept maps” to inform the construction of educational materials, especially their topological, geometrical and pedagogical significance. We supplement this “spatial” dimension with a theory of the dynamic, temporal dimension, grounded in a context of learning processes, such as Kolb’s learning cycle. Finally, we address the multi-player aspects of computer games, and relate this to the theories of social and collaborative learning. This paper attempts to explore various theoretical bases, and so support the development of a new learning and teaching virtual reality approach.
Resumo:
A lightweight Java application suite has been developed and deployed allowing collaborative learning between students and tutors at remote locations. Students can engage in group activities online and also collaborate with tutors. A generic Java framework has been developed and applied to electronics, computing and mathematics education. The applications are respectively: (a) a digital circuit simulator, which allows students to collaborate in building simple or complex electronic circuits; (b) a Java programming environment where the paradigm is behavioural-based robotics, and (c) a differential equation solver useful in modelling of any complex and nonlinear dynamic system. Each student sees a common shared window on which may be added text or graphical objects and which can then be shared online. A built-in chat room supports collaborative dialogue. Students can work either in collaborative groups or else in teams as directed by the tutor. This paper summarises the technical architecture of the system as well as the pedagogical implications of the suite. A report of student evaluation is also presented distilled from use over a period of twelve months. We intend this suite to facilitate learning between groups at one or many institutions and to facilitate international collaboration. We also intend to use the suite as a tool to research the establishment and behaviour of collaborative learning groups. We shall make our software freely available to interested researchers.