6 resultados para Causality (Physics)
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
An education in Physics develops both strong cognitive and practical skills. These are well-matched to the needs of employers, from engineering to banking. Physics provides the foundation for all engineering and scientific disciplines including computing technologies, aerospace, communication, and also biosciences and medicine. In academe, Physics addresses fundamental questions about the universe, the nature of reality, and of the complex socio-economic systems comprising our daily lives. Yet today, there are emerging concerns about Physics education: Secondary school interest in Physics is falling, as is the number of Physics school teachers. There is clearly a crisis in physics education; recent research has identified principal factors. Starting from a review of these factors, and from recommendations of professional bodies, this paper proposes a novel solution – the use of Computer Games to teach physics to school children, to university undergraduates and to teacher-trainees.
Resumo:
Commercial computer games contain “physics engine” components, responsible for providing realistic interactions among game objects. The question naturally arises of whether these engines can be used to develop educational materials for high school and university physics education. To answer this question, the author's group recently conducted a detailed scientific investigation of the physics engine of Unreal Tournament 2004 (UT2004). This article presents their motivation, methodology, and results. The author presents the findings of experiments that probed the accessibility and fidelity of UT2004's physics engine, examples of educational materials developed, and an evaluation of their use in high school classes. The associated pedagogical implications of this approach are discussed, and the author suggests guidelines for educators on how to deploy the approach. Key resources are presented on an associated Web site.
Resumo:
Computer games such as Unreal Tournament (UT2004 and UT3) contain a 'physics engine' responsible for producing believable dynamic interactions between players and objects in the three-dimensional (3D) virtual world of a game. Through a series of probing experiments we have evaluated the fidelity and internal consistency of the UT2004 physics engine. These experiments have then led to the production of resources which may be used by learners and teachers of secondary-school physics. We also suggest an approach to learning, where both teachers and pupils may produce learning materials using the Unreal Tournament editor 'UnrealEd'.