17 resultados para transition metal complexes

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this account, we describe the experience of our research group in the implementation of chiral coinage metal complexes into the efficient enantioselective 1,3-DC of azomethine ylides derived from α-amino acids and azlactones with different dipolarophiles. The corresponding chiral metallodipoles were generated in situ and next focused on the synthesis of highly substituted prolines. For this purpose, privileged ligands such as phosphoramidites and binap with silver(I), gold(I) and copper(II) salts are described. Depending from the ligand and mainly from the metal salt it can be possible to control the facial endo/exo-diasteroselectivity and the enantioselectivity of these types of processes. The synthetic processes are also supported by DFT calculations in order to elucidate the most plausible mechanism and the stereochemical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the conduction band spin splitting that arises in transition metal dichalcogenide (TMD) semiconductor monolayers such as MoS2, MoSe2, WS2, and WSe2 due to the combination of spin-orbit coupling and lack of inversion symmetry. Two types of calculation are done. First, density functional theory (DFT) calculations based on plane waves that yield large splittings, between 3 and 30 meV. Second, we derive a tight-binding model that permits to address the atomic origin of the splitting. The basis set of the model is provided by the maximally localized Wannier orbitals, obtained from the DFT calculation, and formed by 11 atomiclike orbitals corresponding to d and p orbitals of the transition metal (W, Mo) and chalcogenide (S, Se) atoms respectively. In the resulting Hamiltonian, we can independently change the atomic spin-orbit coupling constant of the two atomic species at the unit cell, which permits to analyze their contribution to the spin splitting at the high symmetry points. We find that—in contrast to the valence band—both atoms give comparable contributions to the conduction band splittings. Given that these materials are most often n-doped, our findings are important for developments in TMD spintronics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the nature of spin excitations of individual transition metal atoms (Ti, V, Cr, Mn, Fe, Co, and Ni) deposited on a Cu2N/Cu(100) surface using both spin-polarized density functional theory (DFT) and exact diagonalization of an Anderson model derived from DFT. We use DFT to compare the structural, electronic, and magnetic properties of different transition metal adatoms on the surface. We find that the average occupation of the transition metal d shell, main contributor to the magnetic moment, is not quantized, in contrast with the quantized spin in the model Hamiltonians that successfully describe spin excitations in this system. In order to reconcile these two pictures, we build a zero bandwidth multi-orbital Anderson Hamiltonian for the d shell of the transition metal hybridized with the p orbitals of the adjacent nitrogen atoms, by means of maximally localized Wannier function representation of the DFT Hamiltonian. The exact solutions of this model have quantized total spin, without quantized charge at the d shell. We propose that the quantized spin of the models actually belongs to many-body states with two different charge configurations in the d shell, hybridized with the p orbital of the adjacent nitrogen atoms. This scenario implies that the measured spin excitations are not fully localized at the transition metal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of carbene ligands for transition-metal complexes has been developed in the last decades, being of special interest those carbenes derived from a nitrogen-containing heterocyclic system. An interesting variety of carbene-metal complexes has been tested in the Mizoroki-Heck reaction. In comparison, few examples can be found for the Matsuda-Heck version of this coupling reaction. Additionally, the Sonogashira coupling has been also catalyzed with different carbene-metal catalysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal-complex ionosilicas with cationic complexes into the mesoporous silica framework were prepared using anionic surfactants. The electrostatic interaction between the anionic surfactant and the cationic metal complexes incorporated in the silica framework allows for the fine tuning of the mesoporous structure. The gentle procedure of synthesis developed and mild ion-exchange extraction of the surfactant, allowed a cleaner route for the immobilization of homogeneous cationic catalysts in mesoporous silica, while protecting the structural and chemical integrity of the metal complexes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We discuss the influence of a uniform current j⃗ on the magnetization dynamics of a ferromagnetic metal. We find that the magnon energy ε(q⃗) has a current-induced contribution proportional to q⃗⋅J→, where J→ is the spin current, and predict that collective dynamics will be more strongly damped at finite j⃗. We obtain similar results for models with and without local moment participation in the magnetic order. For transition metal ferromagnets, we estimate that the uniform magnetic state will be destabilized for j≳109A cm-2. We discuss the relationship of this effect to the spin-torque effects that alter magnetization dynamics in inhomogeneous magnetic systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ramón's group has designed a simple, robust and inexpensive methodology for the impregnation of different transition metal oxides on the surface of magnetite and their use in catalysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two series of mesoporous hybrid iron(III) complex–silica aerogels were prepared in one-pot synthesis by using the sol–gel coordination chemistry approach. The use of the ligands 3-(2-aminoethylamino)propyltrimethoxysilane and 2-(diphenylphosphino)ethyltriethoxysilane, both with terminal triethoxysilyl groups, were used to incorporate metal complexes in situ into the framework of silica, through their co-condensation with a silicon alkoxide during the aerogel formation. This methodology yielded optically translucent hybrid mesoporous gels with homogeneous metal incorporation and excellent textural properties. The catalytic performance of these materials was tested in the direct amination of allylic alcohols in water as a target reaction, with activities comparable or even higher than those corresponding to the homogeneous iron(III) complex. Furthermore, these catalysts were stable and maintained their catalytic activity after six reaction cycles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The notion of artificial atom relies on the capability to change the number of carriers one by one in semiconductor quantum dots, and the resulting changes in their electronic structure. Organic molecules with transition metal atoms that have a net magnetic moment and display hysteretic behaviour are known as single molecule magnets (SMM). The fabrication of CdTe quantum dots chemically doped with a controlled number of Mn atoms and with a number of carriers controlled either electrically or optically paves the way towards a new concept in nanomagnetism: the artificial single molecule magnet. Here we study the magnetic properties of a Mn-doped CdTe quantum dot for different charge states and show to what extent they behave like a single molecule magnet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of synthetic routes for the tailoring of efficient silica-based heterogeneous catalysts functionalized with coordination complexes or metallic nanoparticles has become a important goal in chemistry. Most of these techniques have been based on postsynthetic treatments of preformed silicas. Nevertheless, there is an emerging approach, so-called sol–gel coordination chemistry, based on co-condensation during the sol–gel preparation of the hybrid material of the corresponding complex or nanoparticle modified with terminal trialkoxysilane groups with a silica source (such as tetraethoxysilane) and in the presence of an adequate surfactant. This method leads to the production of new mesoporous metal complex-silica materials, with the metallic functionality incorporated homogeneously into the structure of the hybrid material, improving the stability of the coordination complex (which is protected by the silica network) and reducing the leaching of the active phase. This technique also offers the actual possibility of functionalizing silica or other metal oxides for a wider range of applications, such as photonics, sensing, and biochemical functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conformational changes of a humic acid (HA) and a fulvic acid (FA) induced by iron complexation were followed by high-performance size exclusion chromatography (HPSEC) with both UV–vis and refractive index (RI) detectors. Molecular size distribution was reduced for HA and increased for FA with progressive iron complexation. Since interactions of Fe with humic components are electrostatic, it is likely that the triple-charged Fe ions formed stronger complexes with the more acidic hydrophilic and hydrated FA than with the less acidic and more hydrophobic HA. The large content of ionized carboxyl groups in FA, thus favored the formation of intra- or intermolecular bridges between the negatively charged fulvic acid molecules, and led to more compact and larger size network than for HA. Conversely, iron complexation with HA disrupted the humic conformational arrangements stabilized by only weak hydrophobic bonds into smaller-size aggregates of greater conformational stability due to formation of strong metal complexes. These results confirmed that humic molecules in solution were organized in supramolecular associations of relatively small molecules loosely bound together by dispersive interactions and hydrogen bonds, and they specifically responded to chemical changes brought about by metal additions. The present study revealed the molecular changes occurring in superstructures of natural organic matter when in metal complexes and contributed to understand and predict the environmental behavior in waters and soil of metal complexes with natural organic matter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The direct alkylation of indoles using KOH and alcohols, as initial source of the electrophile, under solvent-free conditions is a safe and environmentally benign strategy for selective modification of these structures at the C3-position, without using hazardous and difficult to handle bromide or iodide derivatives or toxic and expensive transition metal catalysts. The protocol shows a broad scope, including halogenated indoles and secondary alcohols.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A set of terms, definitions, and recommendations is provided for use in the classification of coordination polymers, networks, and metal–organic frameworks (MOFs). A hierarchical terminology is recommended in which the most general term is coordination polymer. Coordination networks are a subset of coordination polymers and MOFs a further subset of coordination networks. One of the criteria an MOF needs to fulfill is that it contains potential voids, but no physical measurements of porosity or other properties are demanded per se. The use of topology and topology descriptors to enhance the description of crystal structures of MOFs and 3D-coordination polymers is furthermore strongly recommended.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method to calculate the effective spin Hamiltonian for a transition metal impurity in a non-magnetic insulating host is presented and applied to the paradigmatic case of Fe in MgO. In the first step we calculate the electronic structure employing standard density functional theory (DFT), based on generalized gradient approximation (GGA), using plane waves as a basis set. The corresponding basis of atomic-like maximally localized Wannier functions is derived and used to represent the DFT Hamiltonian, resulting in a tight-binding model for the atomic orbitals of the magnetic impurity. The third step is to solve, by exact numerical diagonalization, the N electron problem in the open shell of the magnetic atom, including both effects of spin–orbit and Coulomb repulsion. Finally, the low energy sector of this multi-electron Hamiltonian is mapped into effective spin models that, in addition to the spin matrices S, can also include the orbital angular momentum L when appropriate. We successfully apply the method to Fe in MgO, considering both the undistorted and Jahn–Teller (JT) distorted cases. Implications for the influence of Fe impurities on the performance of magnetic tunnel junctions based on MgO are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here we present oxygen-nonstoichiometric transition metal oxides as highly prominent candidates to catalyze the industrially important oxidation reactions of hydrocarbons when hydrogen peroxide is employed as an environmentally benign oxidant. The proof-of-concept data are revealed for the complex cobalt oxide, YBaCo4O7+δ (0 < δ < 1.5), in the oxidation process of cyclohexene. In the 2-h reaction experiments YBaCo4O7+δ was found to be significantly more active (>60 % conversion) than the commercial TiO2 catalyst (<20 %) even though its surface area was less than one tenth of that of TiO2. In the 7-h experiments with YBaCo4O7+δ, 100 % conversion of cyclohexene was achieved. Immersion calorimetry measurements showed that the high catalytic activity may be ascribed to the exceptional ability of YBaCo4O7+δ to dissociate H2O2 and release active oxygen to the oxidation reaction.