Large spin splitting in the conduction band of transition metal dichalcogenide monolayers


Autoria(s): Kósmider, K.; González, Jhon W.; Fernández-Rossier, Joaquín
Contribuinte(s)

Universidad de Alicante. Departamento de Física Aplicada

Universidad de Alicante. Instituto Universitario de Materiales

Grupo de Nanofísica

Data(s)

15/04/2016

15/04/2016

23/12/2013

Resumo

We study the conduction band spin splitting that arises in transition metal dichalcogenide (TMD) semiconductor monolayers such as MoS2, MoSe2, WS2, and WSe2 due to the combination of spin-orbit coupling and lack of inversion symmetry. Two types of calculation are done. First, density functional theory (DFT) calculations based on plane waves that yield large splittings, between 3 and 30 meV. Second, we derive a tight-binding model that permits to address the atomic origin of the splitting. The basis set of the model is provided by the maximally localized Wannier orbitals, obtained from the DFT calculation, and formed by 11 atomiclike orbitals corresponding to d and p orbitals of the transition metal (W, Mo) and chalcogenide (S, Se) atoms respectively. In the resulting Hamiltonian, we can independently change the atomic spin-orbit coupling constant of the two atomic species at the unit cell, which permits to analyze their contribution to the spin splitting at the high symmetry points. We find that—in contrast to the valence band—both atoms give comparable contributions to the conduction band splittings. Given that these materials are most often n-doped, our findings are important for developments in TMD spintronics.

JFR acknowledges financial supported by MEC-Spain (FIS2010-21883-C02-01) and Generalitat Valenciana (ACOMP/2010/070), Prometeo. This work has been financially supported in part by FEDER funds. We acknowledge financial support by Marie-Curie-ITN 607904-SPINOGRAPH.

Identificador

Physical Review B. 2013, 88: 245436. doi:10.1103/PhysRevB.88.245436

0163-1829 (Print)

1095-3795 (Online)

http://hdl.handle.net/10045/54246

10.1103/PhysRevB.88.245436

A8184352

Idioma(s)

eng

Publicador

American Physical Society

Relação

http://dx.doi.org/10.1103/PhysRevB.88.245436

Direitos

© 2013 American Physical Society

info:eu-repo/semantics/openAccess

Palavras-Chave #Condensed Matter Physics #2D Materials #Física de la Materia Condensada
Tipo

info:eu-repo/semantics/article