11 resultados para small software project
em Universidad de Alicante
Resumo:
As BIM adoption continues, the goal of a totally collaborative model with multiple contributors is attainable. Many initiatives such as the 2016 UK government level 2 BIM deadline are putting pressure on the construction industry to speed up the changeover. Clients and collaborators have higher expectations of using digital 3D models to communicate design ideas and solve practical problems. Contractors and clients are benefitting from cost saving scheduling and clash detection offered by BIM. Effective collaboration on the project will also give speed and efficiency gains. Despite this, many businesses of varying sizes are still having problems. The cost of the software and the training provides an obvious barrier for micro-enterprises and could explain a delay in adoption. Many studies have looked at these problems faced by SME and micro-enterprises. Larger companies have different problems. The efforts made by government to encourage them are quite comprehensive, but is anything being done to help smaller sectors and keep the industry cohesive? This limited study examines several companies of varying size and varying project type: architectural design businesses, main contractor, structural engineer and building consultancy. The study examines the barriers to a truly collaborative BIM workflow facing different specialities on a larger project and a contrasting small/medium project. The findings will establish that different barriers for each sector are actually pushing further apart, thus potentially creating a BIM-only construction elite, leaving the small companies remaining on 2D based drawing.
Resumo:
Context: Today’s project managers have a myriad of methods to choose from for the development of software applications. However, they lack empirical data about the character of these methods in terms of usefulness, ease of use or compatibility, all of these being relevant variables to assess the developer’s intention to use them. Objective: To compare three methods, each following a different paradigm (Model-Driven, Model-Based and Code-Centric) with respect to their adoption potential by junior software developers engaged in the development of the business layer of a Web 2.0 application. Method: We have conducted a quasi-experiment with 26 graduate students of the University of Alicante. The application developed was a Social Network, which was organized around a fixed set of modules. Three of them, similar in complexity, were used for the experiment. Subjects were asked to use a different method for each module, and then to answer a questionnaire that gathered their perceptions during such use. Results: The results show that the Model-Driven method is regarded as the most useful, although it is also considered the least compatible with previous developers’ experiences. They also show that junior software developers feel comfortable with the use of models, and that they are likely to use them if the models are accompanied by a Model-Driven development environment. Conclusions: Despite their relatively low level of compatibility, Model-Driven development methods seem to show a great potential for adoption. That said, however, further experimentation is needed to make it possible to generalize the results to a different population, different methods, other languages and tools, different domains or different application sizes.
Resumo:
This paper will introduce the reader to some of the “classical” and “new” families of ordered porous materials which have arisen throughout the past decades and/or years. From what is perhaps the best-known family of zeolites, which even now to this day is under constant research, to the exciting new family of hierarchical porous materials, the number of strategies, structures, porous textures, and potential applications grows with every passing day. We will attempt to put these new families into perspective from a synthetic and applied point of view in order to give the reader as broad a perspective as possible into these exciting materials.
Resumo:
This article presents an interactive Java software platform which enables any user to easily create advanced virtual laboratories (VLs) for Robotics. This novel tool provides both support for developing applications with full 3D interactive graphical interface and a complete functional framework for modelling and simulation of arbitrary serial-link manipulators. In addition, its software architecture contains a high number of functionalities included as high-level tools, with the advantage of allowing any user to easily develop complex interactive robotic simulations with a minimum of programming. In order to show the features of the platform, the article describes, step-by-step, the implementation methodology of a complete VL for Robotics education using the presented approach. Finally, some educational results about the experience of implementing this approach are reported.
Resumo:
Commercial off-the-shelf microprocessors are the core of low-cost embedded systems due to their programmability and cost-effectiveness. Recent advances in electronic technologies have allowed remarkable improvements in their performance. However, they have also made microprocessors more susceptible to transient faults induced by radiation. These non-destructive events (soft errors), may cause a microprocessor to produce a wrong computation result or lose control of a system with catastrophic consequences. Therefore, soft error mitigation has become a compulsory requirement for an increasing number of applications, which operate from the space to the ground level. In this context, this paper uses the concept of selective hardening, which is aimed to design reduced-overhead and flexible mitigation techniques. Following this concept, a novel flexible version of the software-based fault recovery technique known as SWIFT-R is proposed. Our approach makes possible to select different registers subsets from the microprocessor register file to be protected on software. Thus, design space is enriched with a wide spectrum of new partially protected versions, which offer more flexibility to designers. This permits to find the best trade-offs between performance, code size, and fault coverage. Three case studies have been developed to show the applicability and flexibility of the proposal.
Resumo:
The aim of this study was to analyze the evolution of socioeconomic inequalities in mortality due to ischemic heart diseases (IHD) in the census tracts of nine Spanish cities between the periods 1996–2001 and 2002–2007. Among women, there are socioeconomic inequalities in IHD mortality in the first period which tended to remain stable or even increase in the second period in most of the cities. Among men, in general, no socioeconomic inequalities have been detected for this cause in either of the periods. These results highlight the importance of intra-urban inequalities in mortality due to IHD and their evolution over time.
Resumo:
Background: Preventable mortality is a good indicator of possible problems to be investigated in the primary prevention chain, making it also a useful tool with which to evaluate health policies particularly public health policies. This study describes inequalities in preventable avoidable mortality in relation to socioeconomic status in small urban areas of thirty three Spanish cities, and analyses their evolution over the course of the periods 1996–2001 and 2002–2007. Methods: We analysed census tracts and all deaths occurring in the population residing in these cities from 1996 to 2007 were taken into account. The causes included in the study were lung cancer, cirrhosis, AIDS/HIV, motor vehicle traffic accidents injuries, suicide and homicide. The census tracts were classified into three groups, according their socioeconomic level. To analyse inequalities in mortality risks between the highest and lowest socioeconomic levels and over different periods, for each city and separating by sex, Poisson regression were used. Results: Preventable avoidable mortality made a significant contribution to general mortality (around 7.5%, higher among men), having decreased over time in men (12.7 in 1996–2001 and 10.9 in 2002–2007), though not so clearly among women (3.3% in 1996–2001 and 2.9% in 2002–2007). It has been observed in men that the risks of death are higher in areas of greater deprivation, and that these excesses have not modified over time. The result in women is different and differences in mortality risks by socioeconomic level could not be established in many cities. Conclusions: Preventable mortality decreased between the 1996–2001 and 2002–2007 periods, more markedly in men than in women. There were socioeconomic inequalities in mortality in most cities analysed, associating a higher risk of death with higher levels of deprivation. Inequalities have remained over the two periods analysed. This study makes it possible to identify those areas where excess preventable mortality was associated with more deprived zones. It is in these deprived zones where actions to reduce and monitor health inequalities should be put into place. Primary healthcare may play an important role in this process.
Resumo:
Following the death of engineer General Jorge Próspero de Verboom in 1744 and after a few years of transition in the management of Spanish fortifications, Juan Martín Zermeño took on the role, initially with a temporary mandate, but then definitively during a second period that ran from 1766 until his death in 1772. He began this second period with a certain amount of concern because of what had taken place during the last period of conflict. The Seven Years War (1756–1763) which had brought Spain into conflict with Portugal and England in the Caribbean had also lead to conflict episodes along the Spanish–Portuguese border. Zermeño’s efforts as a planner and general engineer gave priority to the northern part of the Spanish–Portuguese border. After studying the territory and the existing fortifications on both sides of the border, Zermeño drew up three important projects in 1766. The outposts that needed to be reinforced were located, from north to south, at Puebla de Sanabria, Zamora and Ciudad Rodrigo, which is where he is believed to have come from. This latter township already had a modern installation built immediately after the war of the Spanish Succession and reinforced with the Fort of La Concepción. However, Zamora and Puebla de Sanabria had some obsolete fortifications that needed modernising. Since the middle of the 15th century Puebla de Sanabria had had a modern castle with rounded turrets, that of the counts of benavente. During the 16th and 17th centuries it had also been equipped with a walled enclosure with small bastions. During the war of the Spanish Succession the Portuguese had enlarged the enclosure and had erected a tentative offshoot to the west. In order to draw up the ambitious Puebla de Sanabria project Zermeño had the aid of some previous reports and projects, such as those by the count of robelin in 1722, the one by Antonio de Gaver in 1752, and Pedro Moreau’s report dated June 1755. This study includes a technical analysis of Zermeño’s project and its strategic position within the system of fortifications along the Spanish–Portuguese border.
Resumo:
Integrity assurance of configuration data has a significant impact on microcontroller-based systems reliability. This is especially true when running applications driven by events which behavior is tightly coupled to this kind of data. This work proposes a new hybrid technique that combines hardware and software resources for detecting and recovering soft-errors in system configuration data. Our approach is based on the utilization of a common built-in microcontroller resource (timer) that works jointly with a software-based technique, which is responsible to periodically refresh the configuration data. The experiments demonstrate that non-destructive single event effects can be effectively mitigated with reduced overheads. Results show an important increase in fault coverage for SEUs and SETs, about one order of magnitude.
Resumo:
In this work the split-field finite-difference time-domain method (SF-FDTD) has been extended for the analysis of two-dimensionally periodic structures with third-order nonlinear media. The accuracy of the method is verified by comparisons with the nonlinear Fourier Modal Method (FMM). Once the formalism has been validated, examples of one- and two-dimensional nonlinear gratings are analysed. Regarding the 2D case, the shifting in resonant waveguides is corroborated. Here, not only the scalar Kerr effect is considered, the tensorial nature of the third-order nonlinear susceptibility is also included. The consideration of nonlinear materials in this kind of devices permits to design tunable devices such as variable band filters. However, the third-order nonlinear susceptibility is usually small and high intensities are needed in order to trigger the nonlinear effect. Here, a one-dimensional CBG is analysed in both linear and nonlinear regime and the shifting of the resonance peaks in both TE and TM are achieved numerically. The application of a numerical method based on the finite- difference time-domain method permits to analyse this issue from the time domain, thus bistability curves are also computed by means of the numerical method. These curves show how the nonlinear effect modifies the properties of the structure as a function of variable input pump field. When taking the nonlinear behaviour into account, the estimation of the electric field components becomes more challenging. In this paper, we present a set of acceleration strategies based on parallel software and hardware solutions.
Resumo:
In this work, we propose an inexpensive laboratory practice for an introductory physics course laboratory for any grade of science and engineering study. This practice was very well received by our students, where a smartphone (iOS, Android, or Windows) is used together with mini magnets (similar to those used on refrigerator doors), a 20 cm long school rule, a paper, and a free application (app) that needs to be downloaded and installed that measures magnetic fields using the smartphone's magnetic field sensor or magnetometer. The apps we have used are: Magnetometer (iOS), Magnetometer Metal Detector, and Physics Toolbox Magnetometer (Android). Nothing else is needed. Cost of this practice: free. The main purpose of the practice is that students determine the dependence of the component x of the magnetic field produced by different magnets (including ring magnets and sphere magnets). We obtained that the dependency of the magnetic field with the distance is of the form x-3, in total agreement with the theoretical analysis. The secondary objective is to apply the technique of least squares fit to obtain this exponent and the magnetic moment of the magnets, with the corresponding absolute error.