4 resultados para Stereo vision, mutual information

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a novel filter for feature selection. Such filter relies on the estimation of the mutual information between features and classes. We bypass the estimation of the probability density function with the aid of the entropic-graphs approximation of Rényi entropy, and the subsequent approximation of the Shannon one. The complexity of such bypassing process does not depend on the number of dimensions but on the number of patterns/samples, and thus the curse of dimensionality is circumvented. We show that it is then possible to outperform a greedy algorithm based on the maximal relevance and minimal redundancy criterion. We successfully test our method both in the contexts of image classification and microarray data classification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los métodos para Extracción de Información basados en la Supervisión a Distancia se basan en usar tuplas correctas para adquirir menciones de esas tuplas, y así entrenar un sistema tradicional de extracción de información supervisado. En este artículo analizamos las fuentes de ruido en las menciones, y exploramos métodos sencillos para filtrar menciones ruidosas. Los resultados demuestran que combinando el filtrado de tuplas por frecuencia, la información mutua y la eliminación de menciones lejos de los centroides de sus respectivas etiquetas mejora los resultados de dos modelos de extracción de información significativamente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several recent works deal with 3D data in mobile robotic problems, e.g. mapping or egomotion. Data comes from any kind of sensor such as stereo vision systems, time of flight cameras or 3D lasers, providing a huge amount of unorganized 3D data. In this paper, we describe an efficient method to build complete 3D models from a Growing Neural Gas (GNG). The GNG is applied to the 3D raw data and it reduces both the subjacent error and the number of points, keeping the topology of the 3D data. The GNG output is then used in a 3D feature extraction method. We have performed a deep study in which we quantitatively show that the use of GNG improves the 3D feature extraction method. We also show that our method can be applied to any kind of 3D data. The 3D features obtained are used as input in an Iterative Closest Point (ICP)-like method to compute the 6DoF movement performed by a mobile robot. A comparison with standard ICP is performed, showing that the use of GNG improves the results. Final results of 3D mapping from the egomotion calculated are also shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual information is increasingly being used in a great number of applications in order to perform the guidance of joint structures. This paper proposes an image-based controller which allows the joint structure guidance when its number of degrees of freedom is greater than the required for the developed task. In this case, the controller solves the redundancy combining two different tasks: the primary task allows the correct guidance using image information, and the secondary task determines the most adequate joint structure posture solving the possible joint redundancy regarding the performed task in the image space. The method proposed to guide the joint structure also employs a smoothing Kalman filter not only to determine the moment when abrupt changes occur in the tracked trajectory, but also to estimate and compensate these changes using the proposed filter. Furthermore, a direct visual control approach is proposed which integrates the visual information provided by this smoothing Kalman filter. This last aspect permits the correct tracking when noisy measurements are obtained. All the contributions are integrated in an application which requires the tracking of the faces of Asperger children.