7 resultados para Soft computing
em Universidad de Alicante
Resumo:
Several recent works deal with 3D data in mobile robotic problems, e.g., mapping. Data comes from any kind of sensor (time of flight, Kinect or 3D lasers) that provide a huge amount of unorganized 3D data. In this paper we detail an efficient approach to build complete 3D models using a soft computing method, the Growing Neural Gas (GNG). As neural models deal easily with noise, imprecision, uncertainty or partial data, GNG provides better results than other approaches. The GNG obtained is then applied to a sequence. We present a comprehensive study on GNG parameters to ensure the best result at the lowest time cost. From this GNG structure, we propose to calculate planar patches and thus obtaining a fast method to compute the movement performed by a mobile robot by means of a 3D models registration algorithm. Final results of 3D mapping are also shown.
Resumo:
Virtual Worlds Generator is a grammatical model that is proposed to define virtual worlds. It integrates the diversity of sensors and interaction devices, multimodality and a virtual simulation system. Its grammar allows the definition and abstraction in symbols strings of the scenes of the virtual world, independently of the hardware that is used to represent the world or to interact with it. A case study is presented to explain how to use the proposed model to formalize a robot navigation system with multimodal perception and a hybrid control scheme of the robot.
Resumo:
Modern compilers present a great and ever increasing number of options which can modify the features and behavior of a compiled program. Many of these options are often wasted due to the required comprehensive knowledge about both the underlying architecture and the internal processes of the compiler. In this context, it is usual, not having a single design goal but a more complex set of objectives. In addition, the dependencies between different goals are difficult to be a priori inferred. This paper proposes a strategy for tuning the compilation of any given application. This is accomplished by using an automatic variation of the compilation options by means of multi-objective optimization and evolutionary computation commanded by the NSGA-II algorithm. This allows finding compilation options that simultaneously optimize different objectives. The advantages of our proposal are illustrated by means of a case study based on the well-known Apache web server. Our strategy has demonstrated an ability to find improvements up to 7.5% and up to 27% in context switches and L2 cache misses, respectively, and also discovers the most important bottlenecks involved in the application performance.
Resumo:
Plane model extraction from three-dimensional point clouds is a necessary step in many different applications such as planar object reconstruction, indoor mapping and indoor localization. Different RANdom SAmple Consensus (RANSAC)-based methods have been proposed for this purpose in recent years. In this study, we propose a novel method-based on RANSAC called Multiplane Model Estimation, which can estimate multiple plane models simultaneously from a noisy point cloud using the knowledge extracted from a scene (or an object) in order to reconstruct it accurately. This method comprises two steps: first, it clusters the data into planar faces that preserve some constraints defined by knowledge related to the object (e.g., the angles between faces); and second, the models of the planes are estimated based on these data using a novel multi-constraint RANSAC. We performed experiments in the clustering and RANSAC stages, which showed that the proposed method performed better than state-of-the-art methods.
Resumo:
In this work, we propose the use of the neural gas (NG), a neural network that uses an unsupervised Competitive Hebbian Learning (CHL) rule, to develop a reverse engineering process. This is a simple and accurate method to reconstruct objects from point clouds obtained from multiple overlapping views using low-cost sensors. In contrast to other methods that may need several stages that include downsampling, noise filtering and many other tasks, the NG automatically obtains the 3D model of the scanned objects. To demonstrate the validity of our proposal we tested our method with several models and performed a study of the neural network parameterization computing the quality of representation and also comparing results with other neural methods like growing neural gas and Kohonen maps or classical methods like Voxel Grid. We also reconstructed models acquired by low cost sensors that can be used in virtual and augmented reality environments for redesign or manipulation purposes. Since the NG algorithm has a strong computational cost we propose its acceleration. We have redesigned and implemented the NG learning algorithm to fit it onto Graphics Processing Units using CUDA. A speed-up of 180× faster is obtained compared to the sequential CPU version.
Resumo:
Virtual screening (VS) methods can considerably aid clinical research, predicting how ligands interact with drug targets. Most VS methods suppose a unique binding site for the target, but it has been demonstrated that diverse ligands interact with unrelated parts of the target and many VS methods do not take into account this relevant fact. This problem is circumvented by a novel VS methodology named BINDSURF that scans the whole protein surface in order to find new hotspots, where ligands might potentially interact with, and which is implemented in last generation massively parallel GPU hardware, allowing fast processing of large ligand databases. BINDSURF can thus be used in drug discovery, drug design, drug repurposing and therefore helps considerably in clinical research. However, the accuracy of most VS methods and concretely BINDSURF is constrained by limitations in the scoring function that describes biomolecular interactions, and even nowadays these uncertainties are not completely understood. In order to improve accuracy of the scoring functions used in BINDSURF we propose a hybrid novel approach where neural networks (NNET) and support vector machines (SVM) methods are trained with databases of known active (drugs) and inactive compounds, being this information exploited afterwards to improve BINDSURF VS predictions.
Resumo:
Integrity assurance of configuration data has a significant impact on microcontroller-based systems reliability. This is especially true when running applications driven by events which behavior is tightly coupled to this kind of data. This work proposes a new hybrid technique that combines hardware and software resources for detecting and recovering soft-errors in system configuration data. Our approach is based on the utilization of a common built-in microcontroller resource (timer) that works jointly with a software-based technique, which is responsible to periodically refresh the configuration data. The experiments demonstrate that non-destructive single event effects can be effectively mitigated with reduced overheads. Results show an important increase in fault coverage for SEUs and SETs, about one order of magnitude.