7 resultados para Single event upset rate

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commercial off-the-shelf microprocessors are the core of low-cost embedded systems due to their programmability and cost-effectiveness. Recent advances in electronic technologies have allowed remarkable improvements in their performance. However, they have also made microprocessors more susceptible to transient faults induced by radiation. These non-destructive events (soft errors), may cause a microprocessor to produce a wrong computation result or lose control of a system with catastrophic consequences. Therefore, soft error mitigation has become a compulsory requirement for an increasing number of applications, which operate from the space to the ground level. In this context, this paper uses the concept of selective hardening, which is aimed to design reduced-overhead and flexible mitigation techniques. Following this concept, a novel flexible version of the software-based fault recovery technique known as SWIFT-R is proposed. Our approach makes possible to select different registers subsets from the microprocessor register file to be protected on software. Thus, design space is enriched with a wide spectrum of new partially protected versions, which offer more flexibility to designers. This permits to find the best trade-offs between performance, code size, and fault coverage. Three case studies have been developed to show the applicability and flexibility of the proposal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of microprocessor-based systems is gaining importance in application domains where safety is a must. For this reason, there is a growing concern about the mitigation of SEU and SET effects. This paper presents a new hybrid technique aimed to protect both the data and the control-flow of embedded applications running on microprocessors. On one hand, the approach is based on software redundancy techniques for correcting errors produced in the data. On the other hand, control-flow errors can be detected by reusing the on-chip debug interface, existing in most modern microprocessors. Experimental results show an important increase in the system reliability even superior to two orders of magnitude, in terms of mitigation of both SEUs and SETs. Furthermore, the overheads incurred by our technique can be perfectly assumable in low-cost systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrity assurance of configuration data has a significant impact on microcontroller-based systems reliability. This is especially true when running applications driven by events which behavior is tightly coupled to this kind of data. This work proposes a new hybrid technique that combines hardware and software resources for detecting and recovering soft-errors in system configuration data. Our approach is based on the utilization of a common built-in microcontroller resource (timer) that works jointly with a software-based technique, which is responsible to periodically refresh the configuration data. The experiments demonstrate that non-destructive single event effects can be effectively mitigated with reduced overheads. Results show an important increase in fault coverage for SEUs and SETs, about one order of magnitude.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A scanning tunneling microscope can probe the inelastic spin excitations of a single magnetic atom in a surface via spin-flip assisted tunneling in which transport electrons exchange spin and energy with the atomic spin. If the inelastic transport time, defined as the average time elapsed between two inelastic spin flip events, is shorter than the atom spin-relaxation time, the scanning tunnel microscope (STM) current can drive the spin out of equilibrium. Here we model this process using rate equations and a model Hamiltonian that describes successfully spin-flip-assisted tunneling experiments, including a single Mn atom, a Mn dimer, and Fe Phthalocyanine molecules. When the STM current is not spin polarized, the nonequilibrium spin dynamics of the magnetic atom results in nonmonotonic dI/dV curves. In the case of spin-polarized STM current, the spin orientation of the magnetic atom can be controlled parallel or antiparallel to the magnetic moment of the tip. Thus, spin-polarized STM tips can be used both to probe and to control the magnetic moment of a single atom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study single-electron transport through a graphene quantum dot with magnetic adsorbates. We focus on the relation between the spin order of the adsorbates and the linear conductance of the device. The electronic structure of the graphene dot with magnetic adsorbates is modeled through numerical diagonalization of a tight-binding model with an exchange potential. We consider several mechanisms by which the adsorbate magnetic state can influence transport in a single-electron transistor: tuning the addition energy, changing the tunneling rate, and in the case of spin-polarized electrodes, through magnetoresistive effects. Whereas the first mechanism is always present, the others require that the electrode has to have either an energy- or spin-dependent density of states. We find that graphene dots are optimal systems to detect the spin state of a few magnetic centers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present communication studies the adsorption of aniline on platinum single crystal electrodes and the electrochemical properties of the first layers of polyaniline(PANI) grown on those platinum surfaces. The adsorption process was studied in aqueous acidic solution (0.1 M HClO4) and the electrochemical properties of thin films of PANI in both aqueous (1 M HClO4) and non-aqueous media (tetrabutyl ammonium hexafluorophosphate (TBAPF6) with additions of methanesulphonic acid in acetonitrile). First of all, it was found that the adsorption of aniline on platinum single crystal surfaces is a surface sensitive process, and even more important that the adsorption features found at low concentrations (5 × 10−5 M) can be directly correlated to the electrochemical properties of thin films of PANI in the very early stages of polymerization. The Pt(1 1 0) surface was found to be more suitable to obtain polymers with more reversible redox transitions when studied in aqueous media (1 M HClO4). This is in good agreement with the higher polymerization rates found on this surface compared to Pt(1 0 0) and Pt(1 1 1). Finally the differences in ionic exchange rate were greatly enhanced when they were studied in organic media. The AC 250 Hz response in the case of the thin films synthesized on Pt(1 1 0) is about twice greater than that obtained in the other basal planes using polymer layers with the same thickness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, the electrochemical properties of single-walled carbon nanotube buckypapers (BPs) were examined in terms of carbon nanotubes nature and preparation conditions. The performance of the different free-standing single wall carbon nanotube sheets was evaluated via cyclic voltammetry of several redox probes in aqueous electrolyte. Significant differences are observed in the electron transfer kinetics of the buckypaper-modified electrodes for both the outer- and inner-sphere redox systems. These differences can be ascribed to the nature of the carbon nanotubes (nanotube diameter, chirality and aspect ratio), surface oxidation degree and type of functionalities. In the case of dopamine, ferrocene/ferrocenium, and quinone/hydroquinone redox systems the voltammetric response should be thought as a complex contribution of different tips and sidewall domains which act as mediators for the electron transfer between the adsorbate species and the molecules in solution. In the other redox systems only nanotube ends are active sites for the electron transfer. It is also interesting to point out that a higher electroactive surface area not always lead to an improvement in the electron transfer rate of various redox systems. In addition, the current densities produced by the redox reactions studied here are high enough to ensure a proper electrochemical signal, which enables the use of BPs in sensing devices.