12 resultados para Sahara--Maps.

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Growing Neural Gas model is used widely in artificial neural networks. However, its application is limited in some contexts by the proliferation of nodes in dense areas of the input space. In this study, we introduce some modifications to address this problem by imposing three restrictions on the insertion of new nodes. Each restriction aims to maintain the homogeneous values of selected criteria. One criterion is related to the square error of classification and an alternative approach is proposed for avoiding additional computational costs. Three parameters are added that allow the regulation of the restriction criteria. The resulting algorithm allows models to be obtained that suit specific needs by specifying meaningful parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current RGB-D sensors provide a big amount of valuable information for mobile robotics tasks like 3D map reconstruction, but the storage and processing of the incremental data provided by the different sensors through time quickly become unmanageable. In this work, we focus on 3D maps representation and propose the use of the Growing Neural Gas (GNG) network as a model to represent 3D input data. GNG method is able to represent the input data with a desired amount of neurons or resolution while preserving the topology of the input space. Experiments show how GNG method yields a better input space adaptation than other state-of-the-art 3D map representation methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feature selection is an important and active issue in clustering and classification problems. By choosing an adequate feature subset, a dataset dimensionality reduction is allowed, thus contributing to decreasing the classification computational complexity, and to improving the classifier performance by avoiding redundant or irrelevant features. Although feature selection can be formally defined as an optimisation problem with only one objective, that is, the classification accuracy obtained by using the selected feature subset, in recent years, some multi-objective approaches to this problem have been proposed. These either select features that not only improve the classification accuracy, but also the generalisation capability in case of supervised classifiers, or counterbalance the bias toward lower or higher numbers of features that present some methods used to validate the clustering/classification in case of unsupervised classifiers. The main contribution of this paper is a multi-objective approach for feature selection and its application to an unsupervised clustering procedure based on Growing Hierarchical Self-Organising Maps (GHSOMs) that includes a new method for unit labelling and efficient determination of the winning unit. In the network anomaly detection problem here considered, this multi-objective approach makes it possible not only to differentiate between normal and anomalous traffic but also among different anomalies. The efficiency of our proposals has been evaluated by using the well-known DARPA/NSL-KDD datasets that contain extracted features and labelled attacks from around 2 million connections. The selected feature sets computed in our experiments provide detection rates up to 99.8% with normal traffic and up to 99.6% with anomalous traffic, as well as accuracy values up to 99.12%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new methodology is proposed to produce subsidence activity maps based on the geostatistical analysis of persistent scatterer interferometry (PSI) data. PSI displacement measurements are interpolated based on conditional Sequential Gaussian Simulation (SGS) to calculate multiple equiprobable realizations of subsidence. The result from this process is a series of interpolated subsidence values, with an estimation of the spatial variability and a confidence level on the interpolation. These maps complement the PSI displacement map, improving the identification of wide subsiding areas at a regional scale. At a local scale, they can be used to identify buildings susceptible to suffer subsidence related damages. In order to do so, it is necessary to calculate the maximum differential settlement and the maximum angular distortion for each building of the study area. Based on PSI-derived parameters those buildings in which the serviceability limit state has been exceeded, and where in situ forensic analysis should be made, can be automatically identified. This methodology has been tested in the city of Orihuela (SE Spain) for the study of historical buildings damaged during the last two decades by subsidence due to aquifer overexploitation. The qualitative evaluation of the results from the methodology carried out in buildings where damages have been reported shows a success rate of 100%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of an ex-post assessment of two important dams in Brazil. The study follows the principles of Social Impact Management, which offer a suitable framework for analyzing the complex social transformations triggered by hydroelectric dams. In the implementation of this approach, participative causal maps were used to identify the ex-post social impacts of the Porto Primavera and Rosana dams on the community of Porto Rico, located along the High Paraná River. We found that in the operation of dams there are intermediate causes of a political nature, stemming from decisions based on values and interests not determined by neutral, exclusively technical reasons; and this insight opens up an area of action for managing the negative impacts of dams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a method for diagnosing the impacts of second-home tourism and illustrates it for a Mediterranean Spanish destination. This method proposes the application of network analysis software to the analysis of causal maps in order to create a causal network model based on stakeholder-identified impacts. The main innovation is the analysis of indirect relations in causal maps for the identification of the most influential nodes in the model. The results show that the most influential nodes are of a political nature, which contradicts previous diagnoses identifying technical planning as the ultimate cause of problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hydrological–economic model is introduced to describe the dynamics of groundwater-dependent economics (agriculture and tourism) for sustainable use in sparse-data drylands. The Amtoudi Oasis, a remote area in southern Morocco, in the northern Sahara attractive for tourism and with evidence of groundwater degradation, was chosen to show the model operation. Governing system variables were identified and put into action through System Dynamics (SD) modeling causal diagrams to program basic formulations into a model having two modules coupled by the nexus ‘pumping’: (1) the hydrological module represents the net groundwater balance (G) dynamics; and (2) the economic module reproduces the variation in the consumers of water, both the population and tourists. The model was operated under similar influx of tourists and different scenarios of water availability, such as the wet 2009–2010 and the average 2010–2011 hydrological years. The rise in international tourism is identified as the main driving force reducing emigration and introducing new social habits in the population, in particular concerning water consumption. Urban water allotment (PU) was doubled for less than a 100-inhabitant net increase in recent decades. The water allocation for agriculture (PI), the largest consumer of water, had remained constant for decades. Despite that the 2-year monitoring period is not long enough to draw long-term conclusions, groundwater imbalance was reflected by net aquifer recharge (R) less than PI + PU (G < 0) in the average year 2010–2011, with net lateral inflow from adjacent Cambrian formations being the largest recharge component. R is expected to be much less than PI + PU in recurrent dry spells. Some low-technology actions are tentatively proposed to mitigate groundwater degradation, such as: wastewater capture, treatment, and reuse for irrigation; storm-water harvesting for irrigation; and active maintenance of the irrigation system to improve its efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tras los sustanciales cambios en el plan de estudios actual debido a la futura implantación del nuevo Título de Grado de Arquitectura, es preciso dar cabida a metodologías docentes que potencien las habilidades y competencias específicas del arquitecto al tiempo que respondan a las prestaciones que demanda la sociedad de la Arquitectura. Por ello, se ha propuesto, en distintas asignaturas de la titulación, un taller multidisciplinar que engloba tres de las áreas de conocimiento fundamentales para el desarrollo del alumno de arquitectura como son Proyectos, Estructuras y Construcción. Con ejercicios de este tipo, se pretende contribuir a una mayor coordinación entre estas áreas con el fin de que los estudiantes no perciban la docencia fragmentada en disciplinas estancas. La metodología docente empleada ha consistido en la realización de un trabajo práctico común con un tema de carácter social, con el objetivo de involucrar a los futuros arquitectos en el desarrollo de propuestas reales. Trabajo supervisado mediante correcciones conjuntas con la participación del profesorado de las tres asignaturas de manera coordinada. En conclusión, el alumnado ha mostrado una preferencia mayoritaria por esta metodología docente ya que proporciona una visión conjunta entre asignaturas, englobadas en un único trabajo vinculado a la práctica profesional real.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research described in this thesis was motivated by the need of a robust model capable of representing 3D data obtained with 3D sensors, which are inherently noisy. In addition, time constraints have to be considered as these sensors are capable of providing a 3D data stream in real time. This thesis proposed the use of Self-Organizing Maps (SOMs) as a 3D representation model. In particular, we proposed the use of the Growing Neural Gas (GNG) network, which has been successfully used for clustering, pattern recognition and topology representation of multi-dimensional data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models, without considering time constraints. It is proposed a hardware implementation leveraging the computing power of modern GPUs, which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). The proposed methods were applied to different problem and applications in the area of computer vision such as the recognition and localization of objects, visual surveillance or 3D reconstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growing models have been widely used for clustering or topology learning. Traditionally these models work on stationary environments, grow incrementally and adapt their nodes to a given distribution based on global parameters. In this paper, we present an enhanced unsupervised self-organising network for the modelling of visual objects. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product.