Model Probability in Self-organising Maps
Contribuinte(s) |
Universidad de Alicante. Departamento de Tecnología Informática y Computación Informática Industrial y Redes de Computadores |
---|---|
Data(s) |
16/07/2014
16/07/2014
2013
|
Resumo |
Growing models have been widely used for clustering or topology learning. Traditionally these models work on stationary environments, grow incrementally and adapt their nodes to a given distribution based on global parameters. In this paper, we present an enhanced unsupervised self-organising network for the modelling of visual objects. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product. |
Identificador |
Advances in Computational Intelligence: 12th International Work-Conference on Artificial Neural Networks, IWANN 2013, Puerto de la Cruz, Tenerife, Spain, June 12-14, 2013, Proceedings, Part II. Berlin : Springer, 2013. (Lecture Notes in Computer Science; 7903). ISBN 978-3-642-38681-7, pp. 1-10 978-3-642-38681-7 0302-9743 (Print) 1611-3349 (Online) http://hdl.handle.net/10045/39279 10.1007/978-3-642-38682-4_1 |
Idioma(s) |
eng |
Publicador |
Springer Berlin Heidelberg |
Relação |
http://dx.doi.org/10.1007/978-3-642-38682-4_1 |
Direitos |
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-38682-4_1 info:eu-repo/semantics/restrictedAccess |
Palavras-Chave | #Minimum Description Length #Self-organising networks #Shape Modelling #Arquitectura y Tecnología de Computadores |
Tipo |
info:eu-repo/semantics/conferenceObject |