6 resultados para Real-world semantics
em Universidad de Alicante
Resumo:
Our eyes never remain still. Even when we stare at a fixed point, small involuntary movements take place in our eyes in an imperceptible manner. Researchers agree on the presence of three main contributions to eye movements when we fix the gaze: microsaccades, drifts and tremor. These small movements carry the image across the retina stimulating the photoreceptors and thus avoiding fading. Nowadays it is commonly accepted that these movements can improve the discrimination performance of the retina. In this paper, several retina models with and without fixational eye movements were implemented by mean of RetinaStudio tool to test the feasibility of these models to be incorporated in future neuroprostheses. For this purpose each retina model has been stimulated with natural scene images in two experiments. Results are discussed from the point of view of a neuroprosthesis development.
Resumo:
The delineation of functional economic areas, or market areas, is a problem of high practical relevance, since the delineation of functional sets such as economic areas in the US, Travel-to-Work Areas in the United Kingdom, and their counterparts in other OECD countries are the basis of many statistical operations and policy making decisions at local level. This is a combinatorial optimisation problem defined as the partition of a given set of indivisible spatial units (covering a territory) into regions characterised by being (a) self-contained and (b) cohesive, in terms of spatial interaction data (flows, relationships). Usually, each region must reach a minimum size and self-containment level, and must be continuous. Although these optimisation problems have been typically solved through greedy methods, a recent strand of the literature in this field has been concerned with the use of evolutionary algorithms with ad hoc operators. Although these algorithms have proved to be successful in improving the results of some of the more widely applied official procedures, they are so time consuming that cannot be applied directly to solve real-world problems. In this paper we propose a new set of group-based mutation operators, featuring general operations over disjoint groups, tailored to ensure that all the constraints are respected during the operation to improve efficiency. A comparative analysis of our results with those from previous approaches shows that the proposed algorithm systematically improves them in terms of both quality and processing time, something of crucial relevance since it allows dealing with most large, real-world problems in reasonable time.
Resumo:
A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid–liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett–Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L−1 and 9 μg L−1, respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L−1), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.
Resumo:
A novel approach is presented, whereby gold nanostructured screen-printed carbon electrodes (SPCnAuEs) are combined with in-situ ionic liquid formation dispersive liquid–liquid microextraction (in-situ IL-DLLME) and microvolume back-extraction for the determination of mercury in water samples. In-situ IL-DLLME is based on a simple metathesis reaction between a water-miscible IL and a salt to form a water-immiscible IL into sample solution. Mercury complex with ammonium pyrrolidinedithiocarbamate is extracted from sample solution into the water-immiscible IL formed in-situ. Then, an ultrasound-assisted procedure is employed to back-extract the mercury into 10 µL of a 4 M HCl aqueous solution, which is finally analyzed using SPCnAuEs. Sample preparation methodology was optimized using a multivariate optimization strategy. Under optimized conditions, a linear range between 0.5 and 10 µg L−1 was obtained with a correlation coefficient of 0.997 for six calibration points. The limit of detection obtained was 0.2 µg L−1, which is lower than the threshold value established by the Environmental Protection Agency and European Union (i.e., 2 µg L−1 and 1 µg L−1, respectively). The repeatability of the proposed method was evaluated at two different spiking levels (3 and 10 µg L−1) and a coefficient of variation of 13% was obtained in both cases. The performance of the proposed methodology was evaluated in real-world water samples including tap water, bottled water, river water and industrial wastewater. Relative recoveries between 95% and 108% were obtained.
Resumo:
The mathematical models of the complex reality are texts belonging to a certain literature that is written in a semi-formal language, denominated L(MT) by the authors whose laws linguistic mathematics have been previously defined. This text possesses linguistic entropy that is the reflection of the physical entropy of the processes of real world that said text describes. Through the temperature of information defined by Mandelbrot, the authors begin a text-reality thermodynamic theory that drives to the existence of information attractors, or highly structured point, settling down a heterogeneity of the space text, the same one that of ontologic space, completing the well-known law of Saint Mathew, of the General Theory of Systems and formulated by Margalef saying: “To the one that has more he will be given, and to the one that doesn't have he will even be removed it little that it possesses.
Resumo:
The explosive growth of the traffic in computer systems has made it clear that traditional control techniques are not adequate to provide the system users fast access to network resources and prevent unfair uses. In this paper, we present a reconfigurable digital hardware implementation of a specific neural model for intrusion detection. It uses a specific vector of characterization of the network packages (intrusion vector) which is starting from information obtained during the access intent. This vector will be treated by the system. Our approach is adaptative and to detecting these intrusions by using a complex artificial intelligence method known as multilayer perceptron. The implementation have been developed and tested into a reconfigurable hardware (FPGA) for embedded systems. Finally, the Intrusion detection system was tested in a real-world simulation to gauge its effectiveness and real-time response.