9 resultados para Primitive and Irreducible Polynomials

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to investigate the alkaloid patterns of Lapiedra martinezii and their relation to biogeography and phenology focused in a phylogenetic comparison. Plants from 14 populations of L. martinezii, covering almost its entire distribution area, were subjected to morphological, ecological, and phytochemical analysis. Experiments for different alkaloid-type content are proposed as a new tool for analysis of plant distribution. Several plants were transplanted for weekly observation of their phenological changes, and alkaloids from different plant organs were extracted, listed, and compared. The alkaloid pattern of L. martinezii comprises 49 compounds of homolycorine, lycorine, tazettine, haemantamine, and narciclasine types. The populations located in the north and south margins of the distribution area displayed alkaloid patterns different from those of the central area. Changes in these patterns during their phenological cycle may be related to a better defence for plant reproduction. L. martinezii is an old relict plant, and it has maintained some of the more primitive morphological features and alkaloid profiles of the Mediterranean Amaryllidaceae. The variations in alkaloid content observed could be interpreted in a phylogenetic sense, and those found in their phenological changes, in an adaptive one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper shows that the conjecture of Lapidus and Van Frankenhuysen on the set of dimensions of fractality associated with a nonlattice fractal string is true in the important special case of a generic nonlattice self-similar string, but in general is false. The proof and the counterexample of this have been given by virtue of a result on exponential polynomials P(z), with real frequencies linearly independent over the rationals, that establishes a bound for the number of gaps of RP, the closure of the set of the real projections of its zeros, and the reason for which these gaps are produced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper shows, by means of Kronecker’s theorem, the existence of infinitely many privileged regions called r -rectangles (rectangles with two semicircles of small radius r ) in the critical strip of each function Ln(z):= 1−∑nk=2kz , n≥2 , containing exactly [Tlogn2π]+1 zeros of Ln(z) , where T is the height of the r -rectangle and [⋅] represents the integer part.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: In this paper the authors aim to show the advantages of using the decomposition method introduced by Adomian to solve Emden's equation, a classical non‐linear equation that appears in the study of the thermal behaviour of a spherical cloud and of the gravitational potential of a polytropic fluid at hydrostatic equilibrium. Design/methodology/approach: In their work, the authors first review Emden's equation and its possible solutions using the Frobenius and power series methods; then, Adomian polynomials are introduced. Afterwards, Emden's equation is solved using Adomian's decomposition method and, finally, they conclude with a comparison of the solution given by Adomian's method with the solution obtained by the other methods, for certain cases where the exact solution is known. Findings: Solving Emden's equation for n in the interval [0, 5] is very interesting for several scientific applications, such as astronomy. However, the exact solution is known only for n=0, n=1 and n=5. The experiments show that Adomian's method achieves an approximate solution which overlaps with the exact solution when n=0, and that coincides with the Taylor expansion of the exact solutions for n=1 and n=5. As a result, the authors obtained quite satisfactory results from their proposal. Originality/value: The main classical methods for obtaining approximate solutions of Emden's equation have serious computational drawbacks. The authors make a new, efficient numerical implementation for solving this equation, constructing iteratively the Adomian polynomials, which leads to a solution of Emden's equation that extends the range of variation of parameter n compared to the solutions given by both the Frobenius and the power series methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we give a new characterization of the closure of the set of the real parts of the zeros of a particular class of Dirichlet polynomials that is associated with the set of dimensions of fractality of certain fractal strings. We show, for some representative cases of nonlattice Dirichlet polynomials, that the real parts of their zeros are dense in their associated critical intervals, confirming the conjecture and the numerical experiments made by M. Lapidus and M. van Frankenhuysen in several papers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the authors extend and generalize the methodology based on the dynamics of systems with the use of differential equations as equations of state, allowing that first order transformed functions not only apply to the primitive or original variables, but also doing so to more complex expressions derived from them, and extending the rules that determine the generation of transformed superior to zero order (variable or primitive). Also, it is demonstrated that for all models of complex reality, there exists a complex model from the syntactic and semantic point of view. The theory is exemplified with a concrete model: MARIOLA model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper it is shown that a conjecture of Lapidus and van Frankenhuysen of 2003 on the existence of a vertical line such that the density of the complex dimensions of nonlattice fractal strings with M scaling ratios off this line vanishes in the limit as M→∞, fails on the class of nonlattice self-similar fractal strings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we provide the proof of a practical point-wise characterization of the set RP defined by the closure set of the real projections of the zeros of an exponential polynomial P(z) = Σn j=1 cjewjz with real frequencies wj linearly independent over the rationals. As a consequence, we give a complete description of the set RP and prove its invariance with respect to the moduli of the c′ js, which allows us to determine exactly the gaps of RP and the extremes of the critical interval of P(z) by solving inequations with positive real numbers. Finally, we analyse the converse of this result of invariance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecological models written in a mathematical language L(M) or model language, with a given style or methodology can be considered as a text. It is possible to apply statistical linguistic laws and the experimental results demonstrate that the behaviour of a mathematical model is the same of any literary text of any natural language. A text has the following characteristics: (a) the variables, its transformed functions and parameters are the lexic units or LUN of ecological models; (b) the syllables are constituted by a LUN, or a chain of them, separated by operating or ordering LUNs; (c) the flow equations are words; and (d) the distribution of words (LUM and CLUN) according to their lengths is based on a Poisson distribution, the Chebanov's law. It is founded on Vakar's formula, that is calculated likewise the linguistic entropy for L(M). We will apply these ideas over practical examples using MARIOLA model. In this paper it will be studied the problem of the lengths of the simple lexic units composed lexic units and words of text models, expressing these lengths in number of the primitive symbols, and syllables. The use of these linguistic laws renders it possible to indicate the degree of information given by an ecological model.