On the existence of exponential polynomials with prefixed gaps
Contribuinte(s) |
Universidad de Alicante. Departamento de Análisis Matemático Curvas Alpha-Densas. Análisis y Geometría Local |
---|---|
Data(s) |
26/06/2014
26/06/2014
17/07/2013
|
Resumo |
This paper shows that the conjecture of Lapidus and Van Frankenhuysen on the set of dimensions of fractality associated with a nonlattice fractal string is true in the important special case of a generic nonlattice self-similar string, but in general is false. The proof and the counterexample of this have been given by virtue of a result on exponential polynomials P(z), with real frequencies linearly independent over the rationals, that establishes a bound for the number of gaps of RP, the closure of the set of the real projections of its zeros, and the reason for which these gaps are produced. The second author was partially supported by Vicerrectorado de Investigación, Desarrollo e Innovación de la Universidad de Alicante under project GRE11-23. |
Identificador |
Bulletin of the London Mathematical Society. 2013, 45(6): 1148-1162. doi:10.1112/blms/bdt043 0024-6093 (Print) 1469-2120 (Online) http://hdl.handle.net/10045/38408 10.1112/blms/bdt043 |
Idioma(s) |
eng |
Publicador |
London Mathematical Society |
Relação |
http://dx.doi.org/10.1112/blms/bdt043 |
Direitos |
© 2013 London Mathematical Society info:eu-repo/semantics/openAccess |
Palavras-Chave | #Functions of a complex variable #Entire functions #Fractals #Análisis Matemático |
Tipo |
info:eu-repo/semantics/article |