On the existence of exponential polynomials with prefixed gaps


Autoria(s): Mora Martínez, Gaspar; Sepulcre, Juan Matias; Vidal, Tomás
Contribuinte(s)

Universidad de Alicante. Departamento de Análisis Matemático

Curvas Alpha-Densas. Análisis y Geometría Local

Data(s)

26/06/2014

26/06/2014

17/07/2013

Resumo

This paper shows that the conjecture of Lapidus and Van Frankenhuysen on the set of dimensions of fractality associated with a nonlattice fractal string is true in the important special case of a generic nonlattice self-similar string, but in general is false. The proof and the counterexample of this have been given by virtue of a result on exponential polynomials P(z), with real frequencies linearly independent over the rationals, that establishes a bound for the number of gaps of RP, the closure of the set of the real projections of its zeros, and the reason for which these gaps are produced.

The second author was partially supported by Vicerrectorado de Investigación, Desarrollo e Innovación de la Universidad de Alicante under project GRE11-23.

Identificador

Bulletin of the London Mathematical Society. 2013, 45(6): 1148-1162. doi:10.1112/blms/bdt043

0024-6093 (Print)

1469-2120 (Online)

http://hdl.handle.net/10045/38408

10.1112/blms/bdt043

Idioma(s)

eng

Publicador

London Mathematical Society

Relação

http://dx.doi.org/10.1112/blms/bdt043

Direitos

© 2013 London Mathematical Society

info:eu-repo/semantics/openAccess

Palavras-Chave #Functions of a complex variable #Entire functions #Fractals #Análisis Matemático
Tipo

info:eu-repo/semantics/article