5 resultados para LAGRANGE MULTIPLIERS

em Universidad de Alicante


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Material docente de la asignatura «Simulación y Optimización de procesos químicos». Parte de Optimización OPTIMIZACIÓN TEMA 6. Conceptos Básicos 6.1 Introducción. Desarrollo histórico de la optimización de procesos. 6.2 Funciones y regiones cóncavas y convexas. 6.3 Optimización sin restricciones. 6.4 Optimización con restricciones de igualdad y desigualdad. Condiciones de optimalidad de Karush Khun Tucker 6.5 Interpretación de los Multiplicadores de Lagrange. TEMA 7. Programación lineal 7.1 Introducción. Planteamiento del problema en forma canónica y forma estándar. 7.2 Teoremas de la programación lineal 7.3 Resolución gráfica 7.4 Resolución en forma de tabla. El método simplex. 7.5 Variables artificiales. Método de la Gran M y método de las dos fases. 7.6 Conceptos básicos de dualidad. TEMA 8. Programación no lineal 8.1 Repaso de métodos numéricos de optimización sin restricciones 8.2 Optimización con restricciones. Fundamento de los métodos de programación cuadrática sucesiva y de gradiente reducido. TEMA 9. Introducción a la programación lineal y no lineal con variables discretas. 9.1 Conceptos básicos para la resolución de problemas lineales con variables discretas.(MILP, mixed integer linear programming) 9.2 Introducción a la programación no lineal con variables continuas y discretas (MINLP mixed integer non linear programming) 9.3 Modelado de problemas con variables binarias: 9.3.1 Conceptos básicos de álgebra de Boole 9.3.2 Transformación de expresiones lógicas a expresiones algebraicas 9.3.3 Modelado con variables discretas y continuas. Formulación de envolvente convexa y de la gran M.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This correspondence presents an efficient method for reconstructing a band-limited signal in the discrete domain from its crossings with a sine wave. The method makes it possible to design A/D converters that only deliver the crossing timings, which are then used to interpolate the input signal at arbitrary instants. Potentially, it may allow for reductions in power consumption and complexity in these converters. The reconstruction in the discrete domain is based on a recently-proposed modification of the Lagrange interpolator, which is readily implementable with linear complexity and efficiently, given that it re-uses known schemes for variable fractional-delay (VFD) filters. As a spin-off, the method allows one to perform spectral analysis from sine wave crossings with the complexity of the FFT. Finally, the results in the correspondence are validated in several numerical examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this note is to formulate an envelope theorem for vector convex programs. This version corrects an earlier work, “The envelope theorem for multiobjective convex programming via contingent derivatives” by Jiménez Guerra et al. (2010) [3]. We first propose a necessary and sufficient condition allowing to restate the main result proved in the alluded paper. Second, we introduce a new Lagrange multiplier in order to obtain an envelope theorem avoiding the aforementioned error.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main goal of this paper is to analyse the sensitivity of a vector convex optimization problem according to variations in the right-hand side. We measure the quantitative behavior of a certain set of Pareto optimal points characterized to become minimum when the objective function is composed with a positive function. Its behavior is analysed quantitatively using the circatangent derivative for set-valued maps. Particularly, it is shown that the sensitivity is closely related to a Lagrange multiplier solution of a dual program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this paper is to extend the classical envelope theorem from scalar to vector differential programming. The obtained result allows us to measure the quantitative behaviour of a certain set of optimal values (not necessarily a singleton) characterized to become minimum when the objective function is composed with a positive function, according to changes of any of the parameters which appear in the constraints. We show that the sensitivity of the program depends on a Lagrange multiplier and its sensitivity.