16 resultados para Keratoconus eyes

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background To analyze and compare the relationship between anterior and posterior corneal shape evaluated by a tomographic system combining the Scheimpflug photography and Placido-disc in keratoconus and normal healthy eyes, as well as to evaluate its potential diagnostic value. Methods Comparative case series including a sample of 161 eyes of 161 subjects with ages ranging from 7 to 66 years and divided into two groups: normal group including 100 healthy eyes of 100 subjects, and keratoconus group including 61 keratoconus eyes of 61 patients. All eyes received a comprehensive ophthalmologic examination including an anterior segment analysis with the Sirius system (CSO). Antero-posterior ratios for corneal curvature (k ratio) and shape factor (p ratio) were calculated. Logistic regression analysis was used to evaluate if some antero–posterior ratios combined with other clinical parameters were predictors of the presence of keratoconus. Results No statistically significant differences between groups were found in the antero–posterior k ratios for 3-, 5- and 7-mm diameter corneal areas (p ≥ 0.09). The antero–posterior p ratio for 4.5- and 8-mm diameter corneal areas was significantly higher in the normal group than in the keratoconus group (p < 0.01). The k ratio for 3, 5, and 7 mm was significantly higher in the keratoconus grade IV subgroup than in the normal group (p < 0.01). Furthermore, significant differences were found in the p ratio between the normal group and the keratoconus grade II subgroup (p ≤ 0.01). Finally, the logistic regression analysis identified as significant independent predictors of the presence of keratoconus (p < 0.01) the 8-mm anterior shape factor, the anterior chamber depth, and the minimal corneal thickness. Conclusions The antero-posterior k and p ratios are parameters with poor prediction ability for keratoconus, in spite of the trend to the presence of more prolate posterior corneal surfaces compared to the anterior in keratoconus eyes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: To evaluate in keratoconus eyes the intrasubject repeatability of anterior and posterior corneal curvature and of other anterior segment anatomic measurements obtained with a new topography system combining Scheimpflug-photography and Placido-disk technology. Setting: Vissum Corporation, Alicante, Spain. Design: Evaluation of technology. Methods: All keratoconus eyes had a comprehensive ophthalmologic examination including analysis with the Sirius system. Three consecutive measurements were obtained to assess the intrasubject repeatability of the following parameters: anterior and posterior corneal curvature and shape factor, white-to-white (WTW) corneal diameter, central and minimum corneal thickness, and anterior chamber depth (ACD). The within-subject standard deviation (Sw) and intraclass correlation coefficient (ICC) were calculated. Results: This study comprised 61 eyes of 61 patients ranging in age from 14 to 64 years. For anterior and posterior corneal curvatures and power vector components, the Sw was 0.29 mm or less in all cases. The ICC was above 0.990 in all cases except the flattest curvature of the posterior corneal surface at 3.0 mm, which was 0.840 (moderate agreement), and the posterior power vector J0, which was 0.665 (poor agreement), 0.752, and 0.758 (moderate agreement) for 3.0 mm, 5.0 mm, and 7.0 mm, respectively. In shape factor measurements, the Sw was 0.12 or less in all cases and the ICC ranged between 0.989 and 0.999. Pachymetry, ACD, and WTW had ICC values very close to 1. Conclusion: The new topography system provided repeatable measurements of corneal shape and other anatomic parameters in eyes with keratoconus.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: To evaluate the correlation of the mean curvature and shape factors of both corneal surfaces for different corneal diameters measured with the Scheimpflug photography–based system in keratoconus eyes. Methods: A total of 61 keratoconus eyes of 61 subjects, aged 14 to 64 years, were included in this study. All eyes received a comprehensive ophthalmologic examination including anterior segment and corneal analysis with the Sirius system (CSO): anterior and posterior mean corneal radius for 3, 5, and 7 mm (aKM, pKM), anterior and posterior mean shape factor for 4.5 and 8 mm (ap, pp), central and minimal corneal thickness, and anterior chamber depth. Results: Mean aKM/pKM ratio around 1.20 (range, 0.95–1.48) was found for all corneal diameters (P = 0.24). Weak but significant correlations of this ratio with pachymetric parameters were found (r between −0.28 and −0.34, P < 0.04). The correlation coefficient between aKM and pKM was ≥0.92 for all corneal diameters. A strong and significant correlation was also found between ap and pp (r ≥ 0.86, P < 0.01). The multiple regression analysis revealed that central pKM was significantly correlated with aKM, central corneal thickness, anterior chamber depth, and spherical equivalent (R2 ≥ 0.88, P < 0.01) and that 8 mm pp was significantly correlated with 8 mm ap and age (R2 = 0.89, P < 0.01). Conclusions: Central posterior corneal curvature and shape factor in the keratoconus eye can be consistently predicted from the anterior corneal curvature and shape factor, respectively, in combination with other anatomical and ocular parameters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: To analyze and define the possible errors that may be introduced in keratoconus classification when the keratometric corneal power is used in such classification. Materials and methods: Retrospective study including a total of 44 keratoconus eyes. A comprehensive ophthalmologic examination was performed in all cases, which included a corneal analysis with the Pentacam system (Oculus). Classical keratometric corneal power (Pk), Gaussian corneal power (Pc Gauss), True Net Power (TNP) (Gaussian power neglecting the corneal thickness effect), and an adjusted keratometric corneal power (Pkadj) (keratometric power considering a variable keratometric index) were calculated. All cases included in the study were classified according to five different classification systems: Alió-Shabayek, Amsler-Krumeich, Rabinowitz-McDonnell, collaborative longitudinal evaluation of keratoconus (CLEK), and McMahon. Results: When Pk and Pkadj were compared, differences in the type of grading of keratoconus cases was found in 13.6% of eyes when the Alió-Shabayek or the Amsler-Krumeich systems were used. Likewise, grading differences were observed in 22.7% of eyes with the Rabinowitz-McDonnell and McMahon classification systems and in 31.8% of eyes with the CLEK classification system. All reclassified cases using Pkadj were done in a less severe stage, indicating that the use of Pk may lead to the classification of a cornea as keratoconus, being normal. In general, the results obtained using Pkadj, Pc Gauss or the TNP were equivalent. Differences between Pkadj and Pc Gauss were within ± 0.7D. Conclusion: The use of classical keratometric corneal power may lead to incorrect grading of the severity of keratoconus, with a trend to a more severe grading.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose. We aimed to characterize the distribution of the vector parameters ocular residual astigmatism (ORA) and topography disparity (TD) in a sample of clinical and subclinical keratoconus eyes, and to evaluate their diagnostic value to discriminate between these conditions and healthy corneas. Methods. This study comprised a total of 43 keratoconic eyes (27 patients, 17–73 years) (keratoconus group), 11 subclinical keratoconus eyes (eight patients, 11–54 years) (subclinical keratoconus group) and 101 healthy eyes (101 patients, 15–64 years) (control group). In all cases, a complete corneal analysis was performed using a Scheimpflug photography-based topography system. Anterior corneal topographic data was imported from it to the iASSORT software (ASSORT Pty. Ltd), which allowed the calculation of ORA and TD. Results. Mean magnitude of the ORA was 3.23 ± 2.38, 1.16 ± 0.50 and 0.79 ± 0.43 D in the keratoconus, subclinical keratoconus and control groups, respectively (p < 0.001). Mean magnitude of the TD was 9.04 ± 8.08, 2.69 ± 2.42 and 0.89 ± 0.50 D in the keratoconus, subclinical keratoconus and control groups, respectively (p < 0.001). Good diagnostic performance of ORA (cutoff point: 1.21 D, sensitivity 83.7 %, specificity 87.1 %) and TD (cutoff point: 1.64 D, sensitivity 93.3 %, specificity 92.1 %) was found for the detection of keratoconus. The diagnostic ability of these parameters for the detection of subclinical keratoconus was more limited (ORA: cutoff 1.17 D, sensitivity 60.0 %, specificity 84.2 %; TD: cutoff 1.29 D, sensitivity 80.0 %, specificity 80.2 %). Conclusion. The vector parameters ORA and TD are able to discriminate with good levels of precision between keratoconus and healthy corneas. For the detection of subclinical keratoconus, only TD seems to be valid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. To assess in a sample of normal, keratoconic, and keratoconus (KC) suspect eyes the performance of a set of new topographic indices computed directly from the digitized images of the Placido rings. Methods. This comparative study was composed of a total of 124 eyes of 106 patients from the ophthalmic clinics Vissum Alicante and Vissum Almería (Spain) divided into three groups: control group (50 eyes), KC group (50 eyes), and KC suspect group (24 eyes). In all cases, a comprehensive examination was performed, including the corneal topography with a Placidobased CSO topography system. Clinical outcomes were compared among groups, along with the discriminating performance of the proposed irregularity indices. Results. Significant differences at level 0.05 were found on the values of the indices among groups by means of Mann-Whitney-Wilcoxon nonparametric test and Fisher exact test. Additional statistical methods, such as receiver operating characteristic analysis and K-fold cross validation, confirmed the capability of the indices to discriminate between the three groups. Conclusions. Direct analysis of the digitized images of the Placido mires projected on the cornea is a valid and effective tool for detection of corneal irregularities. Although based only on the data from the anterior surface of the cornea, the new indices performed well even when applied to the KC suspect eyes. They have the advantage of simplicity of calculation combined with high sensitivity in corneal irregularity detection and thus can be used as supplementary criteria for diagnosing and grading KC that can be added to the current keratometric classifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to obtain the exact value of the keratometric index (nkexact) and to clinically validate a variable keratometric index (nkadj) that minimizes this error. Methods: The nkexact value was determined by obtaining differences (DPc) between keratometric corneal power (Pk) and Gaussian corneal power (PGauss c ) equal to 0. The nkexact was defined as the value associated with an equivalent difference in the magnitude of DPc for extreme values of posterior corneal radius (r2c) for each anterior corneal radius value (r1c). This nkadj was considered for the calculation of the adjusted corneal power (Pkadj). Values of r1c ∈ (4.2, 8.5) mm and r2c ∈ (3.1, 8.2) mm were considered. Differences of True Net Power with PGauss c , Pkadj, and Pk(1.3375) were calculated in a clinical sample of 44 eyes with keratoconus. Results: nkexact ranged from 1.3153 to 1.3396 and nkadj from 1.3190 to 1.3339 depending on the eye model analyzed. All the nkadj values adjusted perfectly to 8 linear algorithms. Differences between Pkadj and PGauss c did not exceed 60.7 D (Diopter). Clinically, nk = 1.3375 was not valid in any case. Pkadj and True Net Power and Pk(1.3375) and Pkadj were statistically different (P , 0.01), whereas no differences were found between PGauss c and Pkadj (P . 0.01). Conclusions: The use of a single value of nk for the calculation of the total corneal power in keratoconus has been shown to be imprecise, leading to inaccuracies in the detection and classification of this corneal condition. Furthermore, our study shows the relevance of corneal thickness in corneal power calculations in keratoconus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The aim of this study was to analyze theoretically the errors in the central corneal power calculation in eyes with keratoconus when a keratometric index (nk) is used and to clinically confirm the errors induced by this approach. Methods: Differences (DPc) between central corneal power estimation with the classical nk (Pk) and with the Gaussian equation (PGauss c ) in eyes with keratoconus were simulated and evaluated theoretically, considering the potential range of variation of the central radius of curvature of the anterior (r1c) and posterior (r2c) corneal surfaces. Further, these differences were also studied in a clinical sample including 44 keratoconic eyes (27 patients, age range: 14–73 years). The clinical agreement between Pk and PGauss c (true net power) obtained with a Scheimpflug photography–based topographer was evaluated in such eyes. Results: For nk = 1.3375, an overestimation was observed in most cases in the theoretical simulations, with DPc ranging from an underestimation of 20.1 diopters (D) (r1c = 7.9 mm and r2c = 8.2 mm) to an overestimation of 4.3 D (r1c = 4.7 mm and r2c = 3.1 mm). Clinically, Pk always overestimated the PGauss c given by the topography system in a range between 0.5 and 2.5 D (P , 0.01). The mean clinical DPc was 1.48 D, with limits of agreement of 0.71 and 2.25 D. A very strong statistically significant correlation was found between DPc and r2c (r = 20.93, P , 0.01). Conclusions: The use of a single value for nk for the calculation of corneal power is imprecise in keratoconus and can lead to significant clinical errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This case report reports the visual rehabilitation obtained with the fitting of a new design of full scleral contact lens (ICD 16.5 contact lens, Paragon Vision Sciences, distributed by Lenticon, Madrid, Spain) in a cornea with advanced keratoconus and previous implantation of intracorneal ring segment with a very limited effect. This eye had a refraction of –3.00 × 55° cylinder, providing a visual acuity of 0.5 LogMAR. The topographic pattern was very irregular with the presence of a significant central protrusion and a significant central corneal thinning. Some previous unsuccessful fittings have been performed with corneal and corneal-scleral lenses. A comfortable wearing was achieved with a fully scleral contact lens of 4600 μm of sagittal height, optical power of –11.25 D, and providing an apical clearance of 196 μm. A visual acuity of 0.0 LogMAR combined with a relevant aberrometric improvement was achieved with this contact lens. The patient was completely satisfied with the fitting. The result was maintained during 1 year after the fitting. Full scleral lenses are then able to provide comfortable wear and a significant increase in visual acuity combined with a significant improvement in the visual quality in eyes with advanced keratoconus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To validate clinically an algorithm for correcting the error in the keratometric estimation of corneal power by using a variable keratometric index of refraction (nk) in a normal healthy population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To define a range of normality for the vectorial parameters Ocular Residual Astigmatism (ORA) and topography disparity (TD) and to evaluate their relationship with visual, refractive, anterior and posterior corneal curvature, pachymetric and corneal volume data in normal healthy eyes. Methods: This study comprised a total of 101 consecutive normal healthy eyes of 101 patients ranging in age from 15 to 64 years old. In all cases, a complete corneal analysis was performed using a Scheimpflug photography-based topography system (Pentacam system Oculus Optikgeräte GmbH). Anterior corneal topographic data were imported from the Pentacam system to the iASSORT software (ASSORT Pty. Ltd.), which allowed the calculation of the ocular residual astigmatism (ORA) and topography disparity (TD). Linear regression analysis was used for obtaining a linear expression relating ORA and posterior corneal astigmatism (PCA). Results: Mean magnitude of ORA was 0.79 D (SD: 0.43), with a normality range from 0 to 1.63 D. 90 eyes (89.1%) showed against-the-rule ORA. A weak although statistically significant correlation was found between the magnitudes of posterior corneal astigmatism and ORA (r = 0.34, p < 0.01). Regression analysis showed the presence of a linear relationship between these two variables, although with a very limited predictability (R2: 0.08). Mean magnitude of TD was 0.89 D (SD: 0.50), with a normality range from 0 to 1.87 D. Conclusion: The magnitude of the vector parameters ORA and TD is lower than 1.9 D in the healthy human eye.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background To evaluate the intraocular lens (IOL) position by analyzing the postoperative axis of internal astigmatism as well as the higher-order aberration (HOA) profile after cataract surgery following the implantation of a diffractive multifocal toric IOL. Methods Prospective study including 51 eyes with corneal astigmatism of 1.25D or higher of 29 patients with ages ranging between 20 and 61 years old. All cases underwent uneventful cataract surgery with implantation of the AT LISA 909 M toric IOL (Zeiss). Visual, refractive and corneal topograpy changes were evaluated during a 12-month follow-up. In addition, the axis of internal astigmatism as well as ocular, corneal, and internal HOA (5-mm pupil) were evaluated postoperatively by means of an integrated aberrometer (OPD Scan II, Nidek). Results A significant improvement in uncorrected distance and near visual acuities (p < 0.01) was found, which was consistent with a significant correction of manifest astigmatism (p < 0.01). No significant changes were observed in corneal astigmatism (p = 0.32). With regard to IOL alignment, the difference between the axes of postoperative internal and preoperative corneal astigmatisms was close to perpendicularity (12 months, 87.16° ± 7.14), without significant changes during the first 6 months (p ≥ 0.46). Small but significant changes were detected afterwards (p = 0.01). Additionally, this angular difference correlated with the postoperative magnitude of manifest cylinder (r = 0.31, p = 0.03). Minimal contribution of intraocular optics to the global magnitude of HOA was observed. Conclusions The diffractive multifocal toric IOL evaluated is able to provide a predictable astigmatic correction with apparent excellent levels of optical quality during the first year after implantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To calculate theoretically the errors in the estimation of corneal power when using the keratometric index (nk) in eyes that underwent laser refractive surgery for the correction of myopia and to define and validate clinically an algorithm for minimizing such errors. Methods: Differences between corneal power estimation by using the classical nk and by using the Gaussian equation in eyes that underwent laser myopic refractive surgery were simulated and evaluated theoretically. Additionally, an adjusted keratometric index (nkadj) model dependent on r1c was developed for minimizing these differences. The model was validated clinically by retrospectively using the data from 32 myopic eyes [range, −1.00 to −6.00 diopters (D)] that had undergone laser in situ keratomileusis using a solid-state laser platform. The agreement between Gaussian (PGaussc) and adjusted keratometric (Pkadj) corneal powers in such eyes was evaluated. Results: It was found that overestimations of corneal power up to 3.5 D were possible for nk = 1.3375 according to our simulations. The nk value to avoid the keratometric error ranged between 1.2984 and 1.3297. The following nkadj models were obtained: nkadj= −0.0064286r1c + 1.37688 (Gullstrand eye model) and nkadj = −0.0063804r1c + 1.37806 (Le Grand). The mean difference between Pkadj and PGaussc was 0.00 D, with limits of agreement of −0.45 and +0.46 D. This difference correlated significantly with the posterior corneal radius (r = −0.94, P < 0.01). Conclusions: The use of a single nk for estimating the corneal power in eyes that underwent a laser myopic refractive surgery can lead to significant errors. These errors can be minimized by using a variable nk dependent on r1c.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To compare the manifest refractive cylinder (MRC) predictability of myopic astigmatism laser in situ keratomileusis (LASIK) between eyes with low and high ocular residual astigmatism (ORA). Setting: London Vision Clinic, London, United Kingdom. Design: Retrospective case study. Methods: The ORA was considered the vector difference between the MRC and the corneal astigmatism. The index of success (IoS), difference vector ÷ MRC, was analyzed for different groups as follows: stage 1, low ORA (ORA ÷ MRC <1), high ORA (ORA ÷ MRC ≥1); stage 2, low ORA group reduced to match the high ORA group for MRC; stage 3, grouped by ORA magnitude with low ORA (<0.50 diopters [D]), mid ORA (0.50 to 1.24 D), and high ORA (≥1.25 D); stage 4, high ORA group subdivided into low (<0.75 D) and high (≥0.75 D) corneal astigmatism. Results: For stage 1, the mean preoperative MRC and mean IoS were −1.32 D ± 0.65 (SD) (range −0.55 to −3.77 D) and 0.27, respectively, for low ORA and −0.79 ± 0.20 D (range −0.56 to −2.05 D) and 0.37, respectively, for high ORA. For stage 2, the mean IoS increased to 0.32 for low ORA. For stage 3, the mean IoS was 0.28, 0.29, and 0.31 for low ORA, mid ORA, and high ORA, respectively. For stage 4, the mean IoS was 0.20 for high ORA/low corneal astigmatism and 0.35 for high ORA/high corneal astigmatism. Conclusions: The MRC predictability was slightly worse in eyes with high ORA when grouped by the ORA ÷ MRC. Matching for the MRC and grouping by ORA magnitude resulted in similar predictability; however, eyes with high ORA and high corneal astigmatism were less predictable.