4 resultados para K-uniformly Convex Functions

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nonempty set F is called Motzkin decomposable when it can be expressed as the Minkowski sum of a compact convex set C with a closed convex cone D. In that case, the sets C and D are called compact and conic components of F. This paper provides new characterizations of the Motzkin decomposable sets involving truncations of F (i.e., intersections of FF with closed halfspaces), when F contains no lines, and truncations of the intersection F̂ of F with the orthogonal complement of the lineality of F, otherwise. In particular, it is shown that a nonempty closed convex set F is Motzkin decomposable if and only if there exists a hyperplane H parallel to the lineality of F such that one of the truncations of F̂ induced by H is compact whereas the other one is a union of closed halflines emanating from H. Thus, any Motzkin decomposable set F can be expressed as F=C+D, where the compact component C is a truncation of F̂. These Motzkin decompositions are said to be of type T when F contains no lines, i.e., when C is a truncation of F. The minimality of this type of decompositions is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article provides results guarateeing that the optimal value of a given convex infinite optimization problem and its corresponding surrogate Lagrangian dual coincide and the primal optimal value is attainable. The conditions ensuring converse strong Lagrangian (in short, minsup) duality involve the weakly-inf-(locally) compactness of suitable functions and the linearity or relative closedness of some sets depending on the data. Applications are given to different areas of convex optimization, including an extension of the Clark-Duffin Theorem for ordinary convex programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Convex vector (or multi-objective) semi-infinite optimization deals with the simultaneous minimization of finitely many convex scalar functions subject to infinitely many convex constraints. This paper provides characterizations of the weakly efficient, efficient and properly efficient points in terms of cones involving the data and Karush–Kuhn–Tucker conditions. The latter characterizations rely on different local and global constraint qualifications. The results in this paper generalize those obtained by the same authors on linear vector semi-infinite optimization problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This note provides an approximate version of the Hahn–Banach theorem for non-necessarily convex extended-real valued positively homogeneous functions of degree one. Given p : X → R∪{+∞} such a function defined on the real vector space X, and a linear function defined on a subspace V of X and dominated by p (i.e. (x) ≤ p(x) for all x ∈ V), we say that can approximately be p-extended to X, if is the pointwise limit of a net of linear functions on V, every one of which can be extended to a linear function defined on X and dominated by p. The main result of this note proves that can approximately be p-extended to X if and only if is dominated by p∗∗, the pointwise supremum over the family of all the linear functions on X which are dominated by p.