14 resultados para Entraînement péri-opératoire

em Universidad de Alicante


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mixed metal oxide (MMO) electrodes have been applied to different technologies including chlorine production, organic compounds oxidation, water electrolysis, electroplating, etc. due to their catalytic, optical and electronic properties. Most of the existing MMO electrodes contain either toxic metals or precious metals of the platinum group. The aim of this study was to develop environmentally friendly and cost-effective MMO electrodes for water and organic compounds oxidation. Ti/Ta2O5-SnO2 electrodes of different nominal composition were prepared, and electrochemically and physically characterized. For water oxidation, Ti/SnO2 electrode with 5 at.% of Ta produced the highest electroactivity. Ti/SnO2 electrode with 7.5 at.% of Ta showed the best performance for the oxidation of methylene blue (MB). The electrocatalytic activity of the Ti/Ta2O5-SnO2 electrodes increased with the number of active layers. The maximum current of water oxidation reached 3.5 mA at 2.5 V when the electrode was covered with ten layers of Ta2O5. In case of the oxidation of 0.1 mM MB, eight and ten active layers of Ta2O5 significantly increased the electrode activity. The prepared electrodes have been found applicable for both water electrolysis and organic compounds oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work studies the use of various single-walled carbon nanotube (SWCNT) buckypapers as catalyst supports for methanol electro-oxidation in acid media. Buckypapers were obtained by vacuum filtration from pristine and oxidized SWCNT suspensions in different liquid media. Pt–Ru catalysts supported on the buckypapers were prepared by multiple potentiostatic pulses using a diluted solution of Pt and Ru salts (2 mM H2PtCl6 + 2 mM RuCl3) in acid media. The resulting materials were characterized via SEM, TEM, EDX and ICP-OES analysis. Well dispersed rounded nanoparticles between 2 and 15 nm were successfully electrodeposited on the SWCNT buckypapers. The ruthenium content in the bimetallic deposits was between 32 and 48 at. %, while the specific surface areas of the catalysts were in the range of 72–113 m2 g−1. It was found that the solvent used to prepare the SWCNT buckypaper films has a strong influence on the catalyst dispersion, particle size and metal loading. Cyclic voltammetry and chronoamperometry experiments point out that the most active electrodes for methanol electro-oxidation were prepared with the buckypaper supports that were obtained from SWCNT dispersions in N-methyl-pyrrolidone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An asymmetric aqueous capacitor was constructed by employing zeolite-templated carbon (ZTC) as a pseudocapacitive positive electrode and KOH-activated carbon as a stable negative electrode. The asymmetric capacitor can be operated with the working voltage of 1.4 V, and exhibits an energy density that is comparable to those of conventional capacitors utilizing organic electrolytes, thanks to the large pseudocapacitance of ZTC. Despite relatively thick electrode (0.2 mm) configuration, the asymmetric capacitor could be well operated under a current density of 500 mA g −1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controlled nanozeolite deposits are prepared by electrochemical techniques on a macroporous carbon support and binderless thin film electrodes of zeolite-templated carbon are synthesized using the deposits as templates. The obtained film electrodes exhibit extremely high area capacitance (10–12 mF cm−2) and ultrahigh rate capability in a thin film capacitor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pt–Pd bimetallic nanoparticles supported on graphene oxide (GO) nanosheets were prepared by a sonochemical reduction method in the presence of polyethylene glycol as a stabilizing agent. The synthetic method allowed for a fine tuning of the particle composition without significant changes in their size and degree of aggregation. Detailed characterization of GO-supported Pt–Pd catalysts was carried out by transmission electron microscopy (TEM), AFM, XPS, and electrochemical techniques. Uniform deposition of Pt–Pd nanoparticles with an average diameter of 3 nm was achieved on graphene nanosheets using a novel dual-frequency sonication approach. GO-supported bimetallic catalyst showed significant electrocatalytic activity for methanol oxidation. The influence of different molar compositions of Pt and Pd (1:1, 2:1, and 3:1) on the methanol oxidation efficiency was also evaluated. Among the different Pt/Pd ratios, the 1:1 ratio material showed the lowest onset potential and generated the highest peak current density. The effect of catalyst loading on carbon paper (working electrode) was also studied. Increasing the catalyst loading beyond a certain amount lowered the catalytic activity due to the aggregation of metal particle-loaded GO nanosheets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, the electrochemical properties of single-walled carbon nanotube buckypapers (BPs) were examined in terms of carbon nanotubes nature and preparation conditions. The performance of the different free-standing single wall carbon nanotube sheets was evaluated via cyclic voltammetry of several redox probes in aqueous electrolyte. Significant differences are observed in the electron transfer kinetics of the buckypaper-modified electrodes for both the outer- and inner-sphere redox systems. These differences can be ascribed to the nature of the carbon nanotubes (nanotube diameter, chirality and aspect ratio), surface oxidation degree and type of functionalities. In the case of dopamine, ferrocene/ferrocenium, and quinone/hydroquinone redox systems the voltammetric response should be thought as a complex contribution of different tips and sidewall domains which act as mediators for the electron transfer between the adsorbate species and the molecules in solution. In the other redox systems only nanotube ends are active sites for the electron transfer. It is also interesting to point out that a higher electroactive surface area not always lead to an improvement in the electron transfer rate of various redox systems. In addition, the current densities produced by the redox reactions studied here are high enough to ensure a proper electrochemical signal, which enables the use of BPs in sensing devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hierarchical porous carbon materials prepared by the direct carbonization of lignin/zeolite mixtures and the subsequent basic etching of the inorganic template have been electrochemically characterized in acidic media. These lignin-based templated carbons have interesting surface chemistry features, such as a variety of surface oxygen groups and also pyridone and pyridinic groups, which results in a high capacitance enhancement compared to petroleum-pitch-based carbons obtained by the same procedure. Furthermore, they are easily electro-oxidized in a sulfuric acid electrolyte under positive polarization to produce a large amount of surface oxygen groups that boosts the pseudocapacitance. The lignin-based templated carbons showed a specific capacitance as high as 250 F g−1 at 50 mA g−1, with a capacitance retention of 50 % and volumetric capacitance of 75 F cm−3 at current densities higher than 20 A g−1 thanks to their suitable porous texture. These results indicate the potential use of inexpensive biomass byproducts, such as lignin, as carbon precursors in the production of hierarchical carbon materials for electrodes in electrochemical capacitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High intensity ultrasound can be used for the production of novel nanomaterials, including metal oxides. According to previous works in this field, the most notable effects are consequence of acoustic cavitation. In this context, we have studied the preparation of different materials in the presence of ultrasound, including N-doped TiO2 nanopowder, NiTiO3 nanorods and MnOx thin films. Ultrasound did not show a significant effect in all the cases. Exclusively for NiTiO3 nanorods a reduction of the final particle size occurs upon ultrasonic irradiation. From these results, it can be concluded that the ultrasound irradiation does not always play a key role during the synthesis of metal oxides. The effects seem to be particularly relevant in those cases where mass transport is highly hindered and in those procedures that require the rupture of nanoparticle aggregates to obtain a homogenous dispersion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electro-oxidation of carbon materials enormously degrades their performance and limits their wider utilization in multiple electrochemical applications. In this work, the positive influence of phosphorus functionalities on the overall electrochemical stability of carbon materials has been demonstrated under different conditions. We show that the extent and selectivity of electroxidation in P-containing carbons are completely different to those observed in conventional carbons without P. The electro-oxidation of P-containing carbons involves the active participation of phosphorus surface groups, which are gradually transformed at high potentials from less-to more-oxidized species to slow down the introduction of oxygen groups on the carbon surface (oxidation) and the subsequent generation of (C*OOH)-like unstable promoters of electro-gasification. The highest-oxidized P groups (–C–O–P-like species) seem to distribute the gained oxygen to neighboring carbon sites, which finally suffer oxidation and/or gasification. So it is thought that P-groups could act as mediators of carbon oxidation although including various steps and intermediates compared to electroxidation in P-free materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The template carbonization technique enables the production of porous carbons and carbon-based composites with precisely designed, controlled pore structures. The resulting templated carbons are therefore useful to investigate and understand the relation between carbon nanostructure and electrocapacitive properties. In this short review paper, we introduce our works on electrochemical capacitance using zeolite-templated carbons and carbon-coated anodic aluminum oxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new hybrid molybdenum(IV) Mo3S7 cluster complexes derivatized with diimino ligands have been prepared by replacement of the two bromine atoms of [Mo3S7Br6]2− by a substituted bipyridine ligand to afford heteroleptic molybdenum(IV) Mo3S7Br4(diimino) complexes. Adsorption of the Mo3S7 cores from sample solutions on TiO2 was only achieved from the diimino functionalized clusters. The adsorbed Mo3S7 units were reduced on the TiO2 surface to generate an electrocatalyst that reduces the overpotential for the H2 evolution reaction by approximately 0.3 V (for 1 mA cm−2) with a turnover frequency as high as 1.4 s−1. The nature of the actual active molybdenum sulfide species has been investigated by X-ray photoelectron spectroscopy. In agreement with the electrochemical results, the modified TiO2 nanoparticles show a high photocatalytic activity for H2 production in the presence of Na2S/Na2SO3 as a sacrificial electron donor system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel and selective electrochemical functionalization of a highly reactive superporous zeolite templated carbon (ZTC) with two different aminobenzene acids (2-aminobenzoic and 4-aminobenzoic acid) was achieved. The functionalization was done through potentiodynamic treatment in acid media under oxidative conditions, which were optimized to preserve the unique ZTC structure. Interestingly, it was possible to avoid the electrochemical oxidation of the highly reactive ZTC structure by controlling the potential limit of the potentiodynamic experiment in presence of aminobenzene acids. The electrochemical characterization demonstrated the formation of polymer chains along with covalently bonded functionalities to the ZTC surface. The functionalized ZTCs showed several redox processes, producing a capacitance increase in both basic and acid media. The rate performance showed that the capacitance increase is retained at scan rates as high as 100 mV s−1, indicating that there is a fast charge transfer between the polymer chains formed inside the ZTC porosity or the new surface functionalities and the ZTC itself. The success of the proposed approach was also confirmed by using other characterization techniques, which confirmed the presence of different nitrogen groups in the ZTC surface. This promising method could be used to achieve highly selective functionalization of highly porous carbon materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon and graphene-based materials often show some amount of pseudocapacitance due to their oxygen-functional groups. However, such pseudocapacitance is generally negligible in organic electrolytes and has not attracted much attention. In this work, we report a large pseudocapacitance of zeolite-templated carbon (ZTC) based on the oxygen-functional groups in 1 M tetraethylammonium tetrafluoroborate dissolved in propylene carbonate (Et4NBF4/PC). Due to its significant amount of active edge sites, a large amount of redox-active oxygen functional groups are introduced into ZTC, and ZTC shows a high specific capacitance (330 F g−1). Experimental results suggest that the pseudocapacitance could be based on the formation of anion and cation radicals of quinones and ethers, respectively. Moreover, ZTC shows pseudocapacitance also in 1 M lithium hexafluorophosphate dissolved with a mixture of ethylene carbonate and diethyl carbonate (LiPF6/EC+DEC) which is used for lithium-ion batteries and lithium-ion capacitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemical quartz crystal microbalance was used to monitor the mass changes during the electrochemical characterization of a zeolite-templated carbon (ZTC) in 1 M H2SO4 medium. Under electrochemical oxidation conditions, a high anodic current and a net mass increase were recorded, resulting in the increase of the specific capacitance owing to the contribution of the pseudocapacitance, mainly derived from the hydroquinone–quinone redox couple. Under more severe electrochemical conditions, a net mass loss was observed, revealing that electrochemical gasification took place. Surface chemistry, before and after the electrochemical treatments, was analyzed through temperature programmed desorption experiments. Furthermore, in situ Raman spectroscopy was used to further characterize the structural changes produced in ZTC under the electrochemical conditions applied, supporting that high potential values produce the electrochemical oxidation and degradation of the carbon material.