8 resultados para Electrochemically-assisted method
em Universidad de Alicante
Resumo:
Preparation of homogeneous CNT coatings in insulating silica capillary tubes is carried out by an innovative electrochemically-assisted method in which the driving force for the deposition is the change in pH inside the confined space between the inner electrode and the capillary walls. This method represents a great advancement in the development of CNT coatings following a simple, cost-effective methodology.
Resumo:
Porous, electrically insulating SiO2 layers containing polystyrene sulfonate (PSS) were deposited on glassy carbon electrodes by an electrochemically assisted deposition method. The obtained material was characterized by microscopic, spectroscopic and thermal techniques. Silica-PSS films modify the electrochemical response of the glassy carbon electrodes against selected redox probes. Positively charged species show reduced diffusivities across the SiO2-PSS pores, which resulted in a concentration ratio higher than 1 for these species. The opposite behaviour was found for negatively charged redox probes. These observations can be interpreted in terms of the different affinity of the GC/SiO2-PSS-modified electrode for the electroactive species, as a consequence of the negatively charged porous silica.
Resumo:
A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) procedure has been developed to preconcentrate eight cyclic and linear siloxanes from wastewater samples prior to quantification by gas chromatography-mass spectrometry (GC-MS). A two-stage multivariate optimization approach has been developed employing a Plackett-Burman design for screening and selecting the significant factors involved in the USA-DLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were: extractant solvent volume, 13 µL; solvent type, chlorobenzene; sample volume, 13 mL; centrifugation speed, 2300 rpm; centrifugation time, 5 min; and sonication time, 2 min. Under the optimized experimental conditions the method gave levels of repeatability with coefficients of variation between 10 and 24% (n=7). Limits of detection were between 0.002 and 1.4 µg L−1. Calculated calibration curves gave high levels of linearity with correlation coefficient values between 0.991 and 0.9997. Finally, the proposed method was applied for the analysis of wastewater samples. Relative recovery values ranged between 71–116% showing that the matrix had a negligible effect upon extraction. To our knowledge, this is the first time that combines LLME and GC-MS for the analysis of methylsiloxanes in wastewater samples.
Resumo:
A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid–liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett–Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L−1 and 9 μg L−1, respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L−1), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.
Resumo:
This work presents a comparative study between the catalytic performance of the 2% CuO/ceria-zirconia powder catalyst and the same catalyst supported on silicon carbide DPF (Diesel Particulate Filter) towards NO oxidation reaction and soot combustion reaction. The ceria-zirconia catalyst was prepared by the co-precipitation method and 2 wt% copper was incorporated by the incipient wetness impregnation method. The catalyst was incorporated onto the ceramic support using a simple and organic solvent-free procedure by a simply dipping the DPF into an aqueous solution of the catalyst. The powder catalyst has been characterized using N2 adsorption at −196 °C, XRD and Raman Spectroscopy; whereas the catalytic coating morphology has been evaluated by SEM and the mechanical stability by an adherence test. Both catalyst configurations were tested for NO oxidation to NO2 and for soot combustion under NOx/O2. The results revealed that incorporation of the very active copper/ceria-zirconia catalyst onto SiC-DPF has been successfully achieved by a simple coating procedure. Furthermore, the catalytic coating has shown suitable mechanical, chemical and thermal stability. A satisfactory catalytic performance of the catalytic-coated filter was reached towards the NO oxidation reaction. Moreover, it was proved that the catalytic coating is stable and the corresponding coated DPF can be reused for several cycles of NO oxidation without a significant decrease in its activity. Finally, it was verified that the loose-contact mode is a good choice to simulate the catalytic performance of this active phase in a real diesel particulate filter.
Resumo:
A microwave-assisted extraction (MAE) procedure to isolate phenolic compounds from almond skin byproducts was optimized. A three-level, three-factor Box–Behnken design was used to evaluate the effect of almond skin weight, microwave power, and irradiation time on total phenolic content (TPC) and antioxidant activity (DPPH). Almond skin weight was the most important parameter in the studied responses. The best extraction was achieved using 4 g, 60 s, 100 W, and 60 mL of 70% (v/v) ethanol. TPC, antioxidant activity (DPPH, FRAP), and chemical composition (HPLC-DAD-ESI-MS/MS) were determined by using the optimized method from seven different almond cultivars. Successful discrimination was obtained for all cultivars by using multivariate linear discriminant analysis (LDA), suggesting the influence of cultivar type on polyphenol content and antioxidant activity. The results show the potential of almond skin as a natural source of phenolics and the effectiveness of MAE for the reutilization of these byproducts.
Resumo:
The inner surface of fused-silica capillaries has been coated with a dense/homogeneous coating of commercial multi-wall carbon nanotubes (MWCNTs) using a stable ink as deposit precursor. Solubilization of the MWCNTs was achieved in water/ethanol/dimethylformamide by the action of a surfactant, which can switch between a neutral or an ionic form depending on the pH of the medium, which thus becomes the driving force for the entire deposition process. Careful control of the experimental conditions has allowed us to selectively deposit CNTs on the inner surface of insulating silica capillaries by a simple, reproducible, and easily adaptable method.
Resumo:
A novel approach is presented to determine mercury in urine samples, employing vortex-assisted ionic liquid dispersive liquid–liquid microextraction and microvolume back-extraction to prepare samples, and screen-printed electrodes modified with gold nanoparticles for voltammetric analysis. Mercury was extracted directly from non-digested urine samples in a water-immiscible ionic liquid, being back-extracted into an acidic aqueous solution. Subsequently, it was determined using gold nanoparticle-modified screen-printed electrodes. Under optimized microextraction conditions, standard addition calibration was applied to urine samples containing 5, 10 and 15 μg L−1 of mercury. Standard addition calibration curves using standards between 0 and 20 μg L−1 gave a high level of linearity with correlation coefficients ranging from 0.990 to 0.999 (N = 5). The limit of detection was empirical and statistically evaluated, obtaining values that ranged from 0.5 to 1.5 μg L−1, and from 1.1 to 1.3 μg L−1, respectively, which are significantly lower than the threshold level established by the World Health Organization for normal mercury content in urine (i.e., 10–20 μg L−1). A certified reference material (REC-8848/Level II) was analyzed to assess method accuracy finding 87% and 3 μg L−1 as the recovery (trueness) and standard deviation values, respectively. Finally, the method was used to analyze spiked urine samples, obtaining good agreement between spiked and found concentrations (recovery ranged from 97 to 100%).