4 resultados para Differential equations, Partial -- Numerical solutions -- Computer programs

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-Fourier models of heat conduction are increasingly being considered in the modeling of microscale heat transfer in engineering and biomedical heat transfer problems. The dual-phase-lagging model, incorporating time lags in the heat flux and the temperature gradient, and some of its particular cases and approximations, result in heat conduction modeling equations in the form of delayed or hyperbolic partial differential equations. In this work, the application of difference schemes for the numerical solution of lagging models of heat conduction is considered. Numerical schemes for some DPL approximations are developed, characterizing their properties of convergence and stability. Examples of numerical computations are included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different non-Fourier models of heat conduction have been considered in recent years, in a growing area of applications, to model microscale and ultrafast, transient, nonequilibrium responses in heat and mass transfer. In this work, using Fourier transforms, we obtain exact solutions for different lagging models of heat conduction in a semi-infinite domain, which allow the construction of analytic-numerical solutions with prescribed accuracy. Examples of numerical computations, comparing the properties of the models considered, are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual-phase-lagging (DPL) models constitute a family of non-Fourier models of heat conduction that allow for the presence of time lags in the heat flux and the temperature gradient. These lags may need to be considered when modeling microscale heat transfer, and thus DPL models have found application in the last years in a wide range of theoretical and technical heat transfer problems. Consequently, analytical solutions and methods for computing numerical approximations have been proposed for particular DPL models in different settings. In this work, a compact difference scheme for second order DPL models is developed, providing higher order precision than a previously proposed method. The scheme is shown to be unconditionally stable and convergent, and its accuracy is illustrated with numerical examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modeling of complex dynamic systems depends on the solution of a differential equations system. Some problems appear because we do not know the mathematical expressions of the said equations. Enough numerical data of the system variables are known. The authors, think that it is very important to establish a code between the different languages to let them codify and decodify information. Coding permits us to reduce the study of some objects to others. Mathematical expressions are used to model certain variables of the system are complex, so it is convenient to define an alphabet code determining the correspondence between these equations and words in the alphabet. In this paper the authors begin with the introduction to the coding and decoding of complex structural systems modeling.