6 resultados para Dicamba and 2,4-D
em Universidad de Alicante
Resumo:
In the present Letter several carbolactones (oxidative products) are obtained under aprotic cathodic conditions in the preparative scaled electrolysis of 1,2-quinones in a divided electrochemical cell and in the presence of oxygen. When 9,10-phenanthrenequinone is reduced 6H-dibenzo[b,d]pyran-6-one and [1,1′-biphenyl]-2,2′-dicarboxylic acid are obtained as major products. In the reduction of 1,2-naphthoquinone, 2-benzopyran-1(1H)-one, and 2-(2-carboxyethenyl)-benzoic acid were formed as main products. The proposed mechanism to explain the formation of these and other products, that involves an electron-transfer reaction to the oxygen in air, is now discussed.
Resumo:
Subsidence is a hazard that may have natural or anthropogenic origin causing important economic losses. The area of Murcia city (SE Spain) has been affected by subsidence due to groundwater overexploitation since the year 1992. The main observed historical piezometric level declines occurred in the periods 1982–1984, 1992–1995 and 2004–2008 and showed a close correlation with the temporal evolution of ground displacements. Since 2008, the pressure recovery in the aquifer has led to an uplift of the ground surface that has been detected by the extensometers. In the present work an elastic hydro-mechanical finite element code has been used to compute the subsidence time series for 24 geotechnical boreholes, prescribing the measured groundwater table evolution. The achieved results have been compared with the displacements estimated through an advanced DInSAR technique and measured by the extensometers. These spatio-temporal comparisons have showed that, in spite of the limited geomechanical data available, the model has turned out to satisfactorily reproduce the subsidence phenomenon affecting Murcia City. The model will allow the prediction of future induced deformations and the consequences of any piezometric level variation in the study area.
Resumo:
El document inclou un conjunt de fitxes de lectoescritura per a elaborar la pràctica 4.
Resumo:
A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid–liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett–Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L−1 and 9 μg L−1, respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L−1), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.
Resumo:
The palladium-catalyzed synthesis of dihydroisobenzofurans has been performed by sequential Sonogashira cross-coupling/cyclization reactions between terminal alkynes and 2-(hydroxymethyl)bromo- and chlorobenzenes in methanol as solvent at 130 °C under microwave irradiation. A 4,4′-dichlorobenzophenone oxime-derived chloro-bridged palladacycle is an efficient pre-catalyst to perform this tandem process using 2-dicyclohexylphosphanyl-2′,4′,6′-triisopropylbiphenyl (Xphos) as ancillary ligand and potassium hydroxide as base in the absence of a copper cocatalyst. Under these conditions, functionalized 2-bromo- and 2-chlorobenzaldehydes are also suitable partners in the domino process affording phthalans in good yields. All the reactions can be performed under air and employing reagent-grade chemicals under low loading conditions (1 mol% Pd).
Resumo:
Purpose: The aim of this study was to analyze theoretically the errors in the central corneal power calculation in eyes with keratoconus when a keratometric index (nk) is used and to clinically confirm the errors induced by this approach. Methods: Differences (DPc) between central corneal power estimation with the classical nk (Pk) and with the Gaussian equation (PGauss c ) in eyes with keratoconus were simulated and evaluated theoretically, considering the potential range of variation of the central radius of curvature of the anterior (r1c) and posterior (r2c) corneal surfaces. Further, these differences were also studied in a clinical sample including 44 keratoconic eyes (27 patients, age range: 14–73 years). The clinical agreement between Pk and PGauss c (true net power) obtained with a Scheimpflug photography–based topographer was evaluated in such eyes. Results: For nk = 1.3375, an overestimation was observed in most cases in the theoretical simulations, with DPc ranging from an underestimation of 20.1 diopters (D) (r1c = 7.9 mm and r2c = 8.2 mm) to an overestimation of 4.3 D (r1c = 4.7 mm and r2c = 3.1 mm). Clinically, Pk always overestimated the PGauss c given by the topography system in a range between 0.5 and 2.5 D (P , 0.01). The mean clinical DPc was 1.48 D, with limits of agreement of 0.71 and 2.25 D. A very strong statistically significant correlation was found between DPc and r2c (r = 20.93, P , 0.01). Conclusions: The use of a single value for nk for the calculation of corneal power is imprecise in keratoconus and can lead to significant clinical errors.